Archivi tag: big rip

L’Universo senza compleanno

Secondo il modello del Big Bang, la struttura su larga dell’Universo si espande continuamente, e sempre più velocemente, e lo spazio appare mediamente uguale in ogni direzione. Inoltre, il modello del Big Bang assume che la fisica convenzionale, inclusa la teoria della gravità di Einstein, sia più o meno corretta. In base a questo modello, se si riavvolge indietro di 13,8 miliardi di anni la storia cosmica si arriva ad un “inizio” in cui l’Universo si trovava in uno stato fisico incredibilmente caldo e denso: stiamo parlando della singolarità gravitazionale. Il tempo inizia quando questa singolarità esplode nel Big Bang. Stephen Hawking ha dichiarato che è possibile “eliminare” dalle nostre teorie cosmologiche alcuni eventi “prima” del Big Bang in quanto non esiste alcun modo di misurarli. Tuttavia, la domanda su ciò che ha preceduto il Big Bang rimane ancora affascinante e per qualche scienziato non si può evitare dal punto di vista teorico. Continua a leggere L’Universo senza compleanno

Annunci

Hunting for dark matter with HADES

Nonostante il 96% dell’Universo sia costituito principalmente da materia scura ed energia scura, non siamo ancora in grado di capire qual è la loro origine e natura. Alcuni astrofisici che ricercano le particelle come potenziali candidati della materia scura hanno escluso dalla lista il cosiddetto “fotone scuro” o “bosone U” grazie ad una serie di esperimenti condotti da HADES del Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in collaborazione con altri 17 istituti europei. Questi risultati negativi potrebbero portare a cambiamenti radicali nel modello standard della fisica delle particelle.

Continua a leggere Hunting for dark matter with HADES

‘Mirage’ quintessence and phantom dark energy

Quintessenza e campi “fantasma” sono due tra le varie ipotesi formulate in seguito ai dati ottenuti dai satelliti, come WMAP e Planck, che tentano di spiegare la natura dell’enigmatica energia scura. Oggi, alcuni ricercatori di Barcellona e Atene suggeriscono che entrambe le possibilità sono una sorta di “miraggio” nelle osservazioni e potrebbe essere in definitiva l’energia del vuoto quantistico la principale e l’unica responsabile a celarsi dietro tutto ciò che muove il cosmo.

Cosmologists believe that some three quarters of the Universe are made up of a mysterious dark energy which would explain its accelerated expansion. The truth is that they do not know what it could be, therefore they put forward possible solutions. One is the existence of quintessence, an invisible gravitating agent that instead of attracting, repels and accelerates the expansion of the cosmos. From the Classical World until the Middle Ages, this term has referred to the ether or fifth element of nature, together with earth, fire, water and air. Another possibility is the presence of an energy or phantom field whose density increases with time, causing an exponential cosmic acceleration.

This would reach such speed that it could break the nuclear forces in the atoms and end the Universe in some 20,000 million years, in what is called the Big Rip.

The experimental data that underlie these two hypotheses comes from satellites such as Planck of the European Space Agency (ESA) and Wilkinson Microwave Anisotropy Probe (WMAP) of NASA. Observations from the two probes are essential for solving the so-called equation of the state of dark energy, a characterising mathematical formula, the same as that possessed by solid, liquid and gaseous states. Now researchers from the University of Barcelona (Spain) and the Academy of Athens (Greece) have used the same satellite data to demonstrate that the behaviour of dark energy does not need to resort to either quintessence or phantom energy in order to be explained. The details have been published in the ‘Monthly Notices of the Royal Astronomical Society’ journal. “Our theoretical study demonstrates that the equation of the state of dark energy can simulate a quintessence field, or even a phantom field, without being one in reality, thus when we see these effects in the observations from WMAP, Planck and other instruments, what we are seeing is an mirage”, told SINC Joan Solà, one of the authors from University of Barcelona. “What we think is happening is a dynamic effect of the quantum vacuum, a parameter that we can calculate”, explained the researcher. The concept of the quantum vacuum has nothing to do with the classic notion of absolute nothingness. “Nothing is more ‘full’ than the quantum vacuum since it is full of fluctuations that contribute fundamentally to the values that we observe and measure”, Solà pointed out.

These scientists propose that dark energy is a type of dynamical quantum vacuum energy that acts in the accelerated expansion of our Universe.

This is in contrast to the traditional static vacuum energy or cosmological constant. The drawback with this strange vacuum is that it is the source of problems such as the cosmological constant, a discrepancy between the theoretical data and the predictions of the quantum theory that drives physicists mad. “However, quintessence and phantom fields are still more problematic, therefore the explanation based on the dynamic quantum vacuum could be the more simple and natural one”, concluded Solà.

FECYT/Sinc: Dark energy hides behind phantom fields
arXiv: Effective equation of state for running vacuum: "mirage" quintessence and phantom dark energy
arXiv: Dark energy from a quintessence (phantom) field rolling near potential minimum (maximum)
arXiv: Cosmological constant and vacuum energy: old and new ideas
arXiv: Vacuum energy and cosmological evolution

Per approfondire questo ed altri argomenti: Idee sull’Universo

L’ipotesi delle ‘bolle cosmiche’ secondo George Ellis

Una delle priorità della moderna cosmologia è lo studio dell’energia scura, quella misteriosa forza che sta determinando una espansione accelerata dell’Universo e di cui gli astronomi ignorano ancora la sua natura. Sebbene siano state avanzate varie ipotesi sulla sua origine, di recente il cosmologo George Ellis, dell’Università di Cape Town, ha proposto uno scenario alternativo secondo il quale l’energia scura sarebbe solo un falso effetto dovuto semplicemente alla nostra speciale posizione che occupiamo all’interno di un gigantesco vuoto cosmico, detto anche ‘bolla cosmica’.

Cominciamo prima a vedere le varie ipotesi che sono state avanzate sull’energia scura. La prima risale al 1917 quando Albert Einstein, per evitare il collasso gravitazionale del suo Universo, aveva introdotto nelle equazioni della relatività generale una proprietà dello spazio aggiungendo un termine, chiamato costante cosmologica, che avrebbe stabilizzato l’effetto della gravità mediante l’azione di una forza repulsiva, una sorta di forza antigravitazionale, che agisse su larga scala permeando tutto lo spazio cosmico. Una seconda ipotesi deriva dalla natura quantistica dello spazio quando consideriamo le scale subatomiche. Qui gli effetti quantistici diventano significativi e può succedere che coppie virtuali di particelle-antiparticelle emergano spontaneamente dal vuoto, esistono per un brevissimo intervallo di tempo e poi scompaiono rapidamente. Questo ci dice che lo spazio vuoto non è effettivamente vuoto. Ora, dato che queste particelle virtuali possono riempire lo spazio con una quantità di energia diversa da zero, si è trovato che tutte le misure e le stime della quantità di energia dello spazio vuoto portano a valori decisamente assurdi che vanno da 55 a 120 ordini di grandezza maggiori dell’energia associata a tutta la materia e alla radiazione presenti nell’Universo osservabile. Ciò implica che se l’energia del vuoto avesse realmente quei valori, tutta la materia presente nell’Universo si disperderebbe istantaneamente. Quale effetto avrebbe una tale costante cosmologica? Se veramente il valore della costante cosmologica fosse davvero grande come previsto dalla teoria dei quanti, lo spazio si espanderebbe così rapidamente che la luce dovuta, ad esempio, ai fotoni che provengono dalla mano non raggiungerebbe mai i nostri occhi. Insomma, una accelerazione di proporzioni epiche potrebbe distruggere qualsiasi cosa, dagli atomi alle galassie, e la fine dell’Universo sarebbe quella di un colossale Big Rip. Un terzo aspetto è stato analizzato da Paul Dirac. Egli riteneva che certe quantità fisiche avrebbero potuto variare con il passare del tempo ed essere perciò o troppo grandi o troppo piccole se misurate oggi. La costante cosmologica potrebbe essere un esempio di questa variabilità temporale, in altre parole potrebbe non essere una costante. Per descrivere questa forma di energia variabile nel tempo, Robert CaldwellRahul Dave Paul Steinhardt hanno introdotto il termine quintessenza, ossia “quinto elemento” dall’idea che avevano gli antichi filosofi greci secondo i quali l’Universo era composto da quattro elementi, aria, acqua, terra e fuoco, più una sostanza effimera che impediva alla Luna e ai pianeti di cadere al centro della sfera celeste. Ma per i cosmologi moderni, il termine quintessenza si riferisce ad un campo quantistico dinamico che causa una repulsione gravitazionale. Secondo questa ipotesi, la costante cosmologica evolve nel tempo e si aggiusta, per così dire, fino ad assumere il valore che possiede oggi, determinando una sorta di “stiramento” dello spaziotempo, come quando un elastico viene appunto tirato, e un aumento di volume dello spazio causando una accelerazione all’espansione dell’Universo che prevale quindi a discapito del campo gravitazionale dovuto alla materia. Ma forse l’energia scura non esiste affatto e quello che misuriamo è solo un effetto locale dovuto al fatto che la nostra posizione nella Galassia si trova in una regione particolare dello spazio. E’ ciò che ha proposto George Ellis secondo il quale ci troviamo in una sorta di “bolla cosmica”, ossia un gigantesco vuoto cosmico dove la densità di materia ivi presente è mediamente inferiore rispetto allo spazio circostante. Ora dato che l’Universo si espande in funzione della quantità di materia che, a sua volta, determina un effetto di attrazione gravitazionale frenando l’espansione dello spazio, si ha che più è vuota una regione dello spazio e meno materia esso contiene per rallentare l’espansione. Dunque il tasso di espansione locale dell’Universo diventerà maggiore che altrove e diminuirà in prossimità dei bordi della bolla dove gli effetti della densità di materia diventano più significativi. Quindi, certe regioni dello spazio si espanderanno con velocità diverse così come succede ai palloncini delle feste che non si gonfiano in maniera uniforme. Sebbene questa ipotesi sia alquanto intrigante, tuttavia alcuni scienziati sembrano scettici in merito all’esistenza di giganteschi vuoti cosmici poiché non si spiegherebbe, per esempio, l’uniformità della radiazione cosmica di fondo per non parlare poi della distribuzione apparentemente uniforme delle galassie. Nel primo caso, affinché la radiazione cosmica sia compatibile con la presenza di una regione vuota, dovremmo assumere un vuoto cosmico sferico e con la Terra al suo centro. Nel secondo caso, invece, le osservazioni con gli attuali strumenti non sono abbastanza profonde da confermare, definitivamente o meno, l’esistenza di un vuoto di dimensioni tali da produrre gli effetti attribuiti all’energia scura. Dunque si spera che i prossimi dati del satellite Planck ci forniranno dei limiti più forti sull’anisotropia della radiazione cosmica di fondo che serviranno per verificare l’esistenza di eventuali bolle cosmiche.

Maggiori info: Idee sull’Universo

Quanto tempo rimane alla fine dell’Universo?

L’energia scura costituisce il 73% circa del contenuto materia-energia dell’Universo e perciò da essa dipende il destino del nostro Universo. I cosmologi hanno introdotto vari scenari che, però, sono tutti legati alle proprietà di questa componente enigmatica: uno di questi si basa sul modello del Big Rip  (vedasi Enigmi Astrofisici). Questo interessante argomento è stato di recente affrontato da cinque ricercatori delle University of Science and Technology of China, dell’Institute of Theoretical Physics at the Chinese Academy of Sciences, della Northeastern University e della Peking University.

Per millenni, gli uomini si sono sempre chiesti da dove veniamo e dove andiamo, domande fondamentali le cui risposte oggi cominciano ad avere una propria definizione grazie soprattutto ai progressi della cosmologia moderna degli ultimi trent’anni. Il modello standard cosmologico, noto anche come “Hot Big Bang + Inflation”, è stato sviluppato per spiegare l’origine e l’evoluzione dell’Universo, ma per capire quale sarà la sua fine gli scienziati devono comprendere la natura e l’essenza dell’energia scura. Dunque, la domanda è: quanto siamo distanti dalla fine? I calcoli, che si basano sulle attuali osservazioni, suggeriscono che mancano al meglio 103,5 miliardi di anni al Big Rip, mentre al peggio ci vogliono almeno 16,7 miliardi di anni. La domanda che segue è: cosa ne sarà delle strutture cosmiche, quali stelle e galassie? Se l’energia scura diventerà sempre predominante, si arriverà ad un momento in cui ogni singola struttura legata dalla gravità sarà disgregata. Ad esempio, nell’ipotesi pessimistica, la Via Lattea terminerà di essere una galassia tra 32,9 miliardi di anni; due mesi prima del “giorno del giudizio” la Terra sarà stata distrutta dal Sole; cinque giorni prima, la Luna sarà stata distrutta dalla Terra; il Sole sarà distrutto 28 minuti prima della fine di tutto e 16 minuti prima della fine del tempo, la Terra esploderà. Una cosa è comunque certa: nonostante ad oggi sappiamo poco o nulla sulle proprietà dell’energia scura, abbiamo ancora molto tempo prima della fine del tempo.

Science China: Dark energy and fate of the Universe