Archivi tag: inflazione

Migliaia di simulazioni per analizzare i dati di Planck

Dal 2009, anno in cui è stato messo in orbita, il satellite Planck dell’ESA ha collezionato migliaia di miliardi di osservazioni del cielo per realizzare le misure più precise della radiazione cosmica di fondo. Giovedì prossimo, 21 Marzo 2013, l’ESA e la NASA renderanno pubblici i dati dei primi 15 mesi della missione spaziale.

Il segnale cosmologico presente nei dati della radiazione cosmica di fondo è molto debole e separarlo dal rumore strumentale e dalle varie sorgenti astrofisiche richiede un enorme insieme di dati e una analisi estremamente precisa. I metodi che sono stati utilizzati in precedenza nel caso dei palloni sonda non sono più appropriati. Oggi, gli scienziati devono ricorrere a metodi di approssimazione, come ad esempio le simulazioni Monte Carlo che, per il fatto che sono approssimati, fanno emergere, però, una certa preoccupazione per quanto riguarda gli eventuali errori di misurazione. Dunque per minimizzare queste incertezze, i ricercatori avranno bisogno dell’insieme più grande possibile di simulazioni per analizzare 250 mila mappe del cielo che rappresentano solo il 10% dell’obiettivo per cui è stata realizzata la missione del satellite Planck. Secondo le previsioni, nel 2014 e nel 2015 i dati completi potranno arrivare ad avere una incertezza dell’ordine del 1% considerando almeno 10 mila simulazioni. Queste applicazioni saranno utili anche per le future missioni spaziali che andranno al di là di Planck. Tra queste il telescopio POLARBEAR situato presso il deserto di Atacama in Cile, i palloni sonda EBEX e Spider e, infine, il satellite Cosmic Inflation Probe che dovrebbe darci degli indizi sulle minuscole onde gravitazionali emesse durante gli istanti iniziali della storia dell’Universo, la “prova” che potrebbe dar credito al modello dell’inflazione.

Berkeley Lab: Building the Massive Simulation Sets Essential to Planck Results

Thursday, 21 March 2013 – 09:30 CET:
Planck’s Cosmic Microwave Background map Media Briefing

Media representatives are briefed on the first cosmology data release from ESA’s Planck mission including Planck’s first all-sky map of the cosmic microwave background. Live stream from 09:30 to 15:45 CET from Paris ESA HQ. The session from 14:00 to 15:45 CET is dedicated to the scientific community and science journalists.

ESA WEB-TV

NASA TV

NASA JPL Live

 

Un modello cosmologico alternativo all’inflazione

Black HoleIl nostro Universo potrebbe esistere all’interno di un buco nero. Nonostante questa ipotesi possa sembrare alquanto strana, non lo è, invece, per il fisico teorico Nikodem Poplawski. La sua idea potrebbe rappresentare il quadro migliore per spiegare l’origine dell’Universo e tutta la realtà fisica che ci circonda.

Il modello cosmologico standard, che descrive l’evoluzione del nostro Universo, lascia alcune domande aperte dato che implicano l’origine dello spazio e del tempo da una singolarità iniziale, cioè una regione infinitamente piccola che contiene una concentrazione infinitamente grande di materia, che poi si è espansa nello spazio, in seguito all’inflazione, fino a raggiungere le dimensioni che osserviamo oggi. Il modello inflazionistico, che suggerisce un periodo di rapida espansione esponenziale, soddisfa alcuni dettagli importanti, come ad esempio l’aggregazione e la concentrazione della materia primordiale da cui si sono formate successivamente le strutture quali galassie e ammassi di galassie. Nonostante ciò, gli scienziati devono ancora rispondere ad alcune domande: Che cosa ha dato il via al Big Bang? Che cosa ha fatto terminare il periodo dell’inflazione? Qual è la sorgente della misteriosa energia scura che sembra causare una accelerazione all’espansione dello spazio? L’idea che il nostro Universo possa essere interamente ‘contenuto’ in un buco nero fornisce le risposte a queste domande e a molte altre. Intanto viene eliminata la nozione di singolarità e l’idea Poplawski si basa sulle due teorie fondamentali che abbiamo al momento a disposizione: la relatività generale e la meccanica quantistica. La relatività generale è la teoria più moderna della gravità che viene descritta come la curvatura dello spaziotempo prodotta da un corpo celeste di grande massa. In essa tutti gli oggetti si muovono seguendo traiettorie ellittiche (come le orbite dei pianeti, delle comete o degli asteroidi) e la stessa radiazione ne viene influenzata attraverso la deflessione dei raggi luminosi (lente gravitazionale). La relatività generale descrive l’Universo su larga scala e qualsiasi evento viene descritto come un punto nello spaziotempo. La meccanica quantistica descrive, invece, il mondo degli atomi e delle particelle. Le due teorie sono, al momento, come due famiglie separate che vivono nella stessa casa e non si parlano. Infatti, uno degli obiettivi principali dei teorici è proprio quello di  trovare un punto d’incontro in modo tale da unificare le due teorie in una unica descrizione (gravità quantistica) per spiegare in maniera adeguata tutta una serie di fenomeni, inclusi il comportamento delle particelle elementari in prossimità dei buchi neri (vedasi Idee sull’Universo). Negli anni ’60, alcuni teorici introdussero una serie di modifiche alla relatività generale tenendo conto degli effetti descritti dalla meccanica quantistica: questa formulazione matematica è stata chiamata la teoria della gravità Einstein-Cartan-Sciama-Kibble. Questo modello non solo fornisce un passo importante verso una teoria quantistica della gravità ma porta ad un quadro alternativo del nostro Universo. Le modifiche introdotte nella teoria di Einstein incorporano una importante proprietà quantistica chiamata spin. Le particelle come gli elettroni hanno uno spin proprio, cioè un momento angolare intrinseco analogo a quello di un pattinatore sul ghiaccio. Ora, lo spin delle particelle interagisce con lo spaziotempo e ne determina una proprietà chiamata torsione. A sua volta, la torsione dello spaziotempo può determinare effetti significativi solo durante le epoche primordiali dell’Universo o nei buchi neri. In queste condizioni estreme, la torsione dello spaziotempo si può manifestare come una forza di natura repulsiva che si oppone alla forza gravitazionale attrattiva dovuta alla curvatura dello spaziotempo. Come descritto nella versione originale della relatività generale, stelle di grande massa possono collassare in un buco nero che dà luogo ad una regione dello spazio dove nulla, nemmeno la luce, è in grado di sfuggire alla sua intensa attrazione gravitazionale. Ecco allora come l’effetto della torsione potrebbe agire durante le fasi primordiali della storia dell’Universo all’interno di un buco nero. Inizialmente, l’attrazione gravitazionale tra le particelle supera le forze repulsive dovute alla torsione, determinando il collasso gravitazionale della materia in una piccolissima regione di spazio. Tuttavia, alla fine del processo, l’effetto della torsione diventa maggiore e fa sì che la materia non diventi estremamente compressa in un punto di densità infinita. Nonostante ciò, la materia può essere ancora compressa in uno stato a densità elevata. Inoltre, l’immensa energia gravitazionale concentrata in questo stato fisico determina la produzione di particelle dato che, secondo l’equazione di Einstein E=mc2, l’energia può essere convertita in materia. Una delle conseguenze di questo processo è l’incremento della massa del buco nero. Il numero via via crescente di particelle dotate di spin risulta nella formazione di livelli di torsione dello spaziotempo sempre più elevati. La torsione repulsiva ferma il collasso gravitazionale e crea un big bounce, cioè un rimbalzo come quello che avviene in un pallone compresso. Il rapido rinculo, che segue dopo il rimbalzo, è ciò che determina l’espansione dello spazio. Il risultato di questo rinculo è in accordo con le osservazioni della forma, della geometria e della distribuzione di materia nell’Universo. In più, il meccanismo della torsione suggerisce uno scenario interessante: ogni buco nero produce un nuovo universo. Se ciò è vero, allora la materia primordiale del nostro Universo deve essere arrivata da qualche altra parte. Dunque, il nostro Universo potrebbe essere la parte interna di un buco nero che esiste in un altro universo. Per cui così come noi non siamo in grado di vedere ciò che avviene all’interno di un buco nero, allo stesso modo qualsiasi osservatore che si trova nell’altro universo non sarà in grado di vedere cosa succede nel nostro. Il moto della materia lungo l’orizzonte degli eventi avviene solo in una direzione e ciò dà al tempo una direzione privilegiata che noi percepiamo come un movimento in avanti, cioè dal passato al futuro. In questo modo, la freccia del tempo del nostro Universo viene, per così dire, ereditata attraverso la torsione dall’altro universo ‘madre’ da cui discende. La torsione può inoltre spiegare l’asimmetria barionica tra materia e antimateria nel nostro Universo che rappresenta ancora uno dei grandi misteri della cosmologia (vedasi Enigmi Astrofisici). A causa della torsione, la materia si trasforma nelle particelle a noi familiari, quali elettroni e quark, mentre l’antimateria si trasforma, invece, in materia scura, quella componente misteriosa che costituisce il 23% circa del contenuto materia-energia del nostro Universo. Infine, la stessa torsione potrebbe essere la sorgente dell’energia scura, quell’altra componente enigmatica dominante che costituisce il 73% circa del contenuto materia-energia dell’Universo e che permea tutto lo spazio causando una accelerazione dell’espansione. La geometria con un effetto di torsione produce in maniera naturale una costante cosmologica che rappresenta una sorta di forza aggiuntiva per spiegare nella maniera più semplice gli effetti dell’energia scura. In questo modo, l’espansione accelerata dell’Universo potrebbe terminare essendo l’evidenza più forte degli effetti dovuti alla torsione.

Per riepilogare, questo meccanismo di torsione fornisce un quadro teorico per uno scenario in cui la parte interna di un buco nero rappresenta un nuovo universo. Esso diventa anche una specie di rimedio ai maggiori problemi della cosmologia e delle varie teorie della gravità. Oggi, forse, i fisici hanno bisogno di combinare completamente la teoria della gravità di Einstein-Cartan-Sciama-Kibble con la meccanica quantistica in una teoria quantistica della gravità. Se, però, vengono superati alcuni problemi naturalmente emergono altre domande tipo: Che cosa sappiamo del buco nero all’interno del quale risiede il nostro Universo? Quanti altri universi esistono al di fuori del buco nero? Come facciamo a verificare che il nostro Universo esiste effettivamente all’interno di un buco nero? A quest’ultima domanda possiamo rispondere in questo modo: dato che tutte le stelle così come i buchi neri ruotano, il nostro Universo può aver ereditato una sorta di “direzione preferenziale” data dall’asse di rotazione del buco nero da cui discende. Di fatto, esiste una recente evidenza da uno studio relativo ad una survey di 15 mila galassie in cui si osserva che esistono più galassie a spirale che ruotano in senso antiorario in un emisfero mentre nell’altro emisfero esistono più galassie a spirale che ruotano nel verso opposto (post). Per concludere, secondo Poplawski tener conto degli effetti della torsione nella geometria dello spaziotempo rappresenta un passo fondamentale verso la formulazione di una nuova teoria cosmologica.

arXiv: Cosmology With Torsion - An Alternative To Cosmic Inflation

L’origine dell’Universo secondo la gravità quantistica a loop

Image credit: Thomas Fuchs

Secondo il modello cosmologico standard, l’Universo ebbe origine da una grande esplosione iniziale, il Big Bang, circa 13-14 miliardi di anni fa. Alcuni istanti dopo, l’Universo subì una rapida espansione, nota come inflazione, che diede forma, per così dire, allo spazio cosmico. Durante questo periodo, emersero minuscole fluttuazioni di energia che, successivamente, diedero luogo a tutte quelle strutture cosmiche che oggi possiamo ammirare sottoforma di galassie e ammassi di galassie. Nonostante questo modello sia in grado di descrivere in prima approssimazione l’evoluzione dell’Universo primordiale, nessuno è in grado di spiegare come hanno avuto origine queste fluttuazioni primordiali. Ma di recente, tre fisici avrebbero scoperto la chiave per risolvere questo enigma attraverso la formulazione di una teoria in cui la gravità dovrebbe mostrare lo stesso comportamento bizzarro basato sull’incertezza che regna nel mondo delle particelle subatomiche.

La cosmologia standard, che si basa sulla relatività generale, non è in grado di spiegare l’origine delle fluttuazioni dato che viene meno quando consideriamo scale molto piccole, tipiche del mondo degli atomi. Durante il brevissimo ed infinitesimale intervallo di tempo prima che avesse luogo l’inflazione, noto come era di Planck, l’intero Universo era compresso in una regione di spazio molti ordini di grandezza più piccola di quella che occupa un atomo. Se tentiamo di applicare la relatività a questa situazione, le sue previsioni non hanno più senso fisico dato che portano a valori infiniti della densità di energia. Dunque, per estendere i concetti di Einstein a queste situazioni estreme i ricercatori hanno sviluppato una teoria denominata loop quantum gravity. Sin dagli anni ’80, Abhay Ashtekar, attualmente alla Pennsylvania State University, trasformò in qualche modo le equazioni di Einstein per renderle compatibili nell’ambito della fisica quantistica. Ma ci fu un prezzo da pagare. Infatti, come conseguenza di questa manipolazione matematica si trovò che lo spazio non era più liscio, continuo e regolare, come nel caso del mondo infinitamente grande, ma consisteva di tante unità discrete, denominate loop o anelli, e che la sua struttura microscopica poteva fluttuare contemporaneamente tra tutta una serie di stati multipli. Nel corso degli ultimi anni, i fisici hanno dichiarato che se, e con un grande “se” dato che non abbiamo ancora evidenze sperimentali, la teoria della gravità quantistica a loop si dimostrerà corretta allora il Big Bang dovrebbe essere stato originato da un vero e proprio Big Bounce associato ad un precedente universo che si trovava nella fase di collasso gravitazionale. Oggi, però, Ashtekar e i suoi collaboratori sono convinti che questa tecnica, attraverso la quale è possibile estendere i concetti della relatività generale verso gli istanti primordiali della storia dell’Universo, possa riempire il divario tra il Big Bounce, cioè l’era di Planck, e il momento in cui ha origine l’inflazione non solo ma grazie ad essa è possibile spiegare anche la formazione di tutte quelle fluttuazioni senza le quali non si sarebbero formate nel corso del tempo le strutture cosmiche fino ad arrivare persino a noi stessi. Queste fluttuazioni primordiali sarebbero perciò la naturale conseguenza delle fluttuazioni quantistiche che esistevano già all’epoca del Big Bounce. “I nostri risultati forniscono una estensione autoconsistente dell’inflazione fino alla scala di Planck” dichiara Ashtekar. “Il fatto che la gravità quantistica abbia lasciato oggi una sorta di ‘impronta digitale’ sulle strutture cosmiche è alquanto sorprendente ed elegante” dichiara Jorge Pullin della Louisiana State University, un esperto di gravità quantistica a loop e buchi neri. Neil Turok, direttore del Perimeter Institute for Theoretical Physics in Ontario, afferma invece che i ricercatori hanno bisogno di introdurre tutta una serie di “assunzioni artificiose” per poter procedere indietro nel tempo dal momento in cui avviene l’inflazione fino a epoche più remote. “La gravità quantistica a loop è interessante”, dice Turok, “ma non si tratta ancora di una vera e propria teoria e perciò bisogna stare attenti a non prendere sul serio certe sue predizioni”. 

Full story: The missing epoch

WMAP, pubblicati i dati finali dopo nove anni di osservazioni

Sin da quando è stato lanciato nel lontano 2001, il satellite Wilkinson Microwave Anisotropy Probe (WMAP) ha rivoluzionato la nostra visione dell’Universo, rafforzando un modello cosmologico mediante il quale gli astronomi possono oggi spiegare tutta una serie di osservazioni. La missione spaziale, guidata da Charles L. Bennett della Johns Hopkins University, ha permesso di determinare, con un elevato grado di precisione, non solo l’età dell’Universo ma anche la densità degli atomi, la densità di tutta la materia non composta da atomi, l’epoca di formazione delle prime stelle, localizzando persino quei ‘siti cosmici’ dove la materia si è aggregata per formare successivamente le galassie e gli ammassi di galassie.

In breve, le osservazioni di WMAP ci hanno fornito l’informazione sui suddetti parametri con un livello di accuratezza circa 70 mila volte superiore facendo della cosmologia una scienza di precisione. Oggi, trascorsi due anni da quando il satellite è andato in pensione, Bennett e il suo gruppo scientifico hanno pubblicato i risultati finali della missione dopo nove anni di osservazioni. “Si tratta quasi di un miracolo” spiega Bennett. “L’Universo sembra racchiudere una sorta di codice personale che si cela nella radiazione cosmica di fondo e quando lo abbiamo decodificato abbiamo rivelato la sua storia e il suo contenuto. E’ davvero sorprendente come ogni cosa vada nel suo posto”. L’immagine ottenuta da WMAP che fotografa l’Universo da ‘giovane’, all’età di appena 375 mila anni dopo il Big Bang, ci permette di porre dei limiti su ciò che potrebbe essere accaduto prima e su ciò che accaduto miliardi di anni dopo quel momento. Il modello cosmologico standard, noto anche come Big Bang, che afferma che l’Universo delle origini era estremamente caldo e denso e che poi si è raffreddato in seguito alla sua espansione, è fortemente supportato dai dati di WMAP. Inoltre, le osservazioni di WMAP vanno a favore di un altro modello, l’inflazione, che descrive gli attimi immediatamente dopo la grande esplosione iniziale. Il modello inflazionistico afferma che l’Universo subì una rapida espansione esponenziale causando un incremento del proprio volume di spazio dell’ordine di circa un trilione di trilione di volte in meno di un trilionesimo di trilionesimo di secondo. In seguito a questa immane variazione di volume dello spazio, si generarono piccolissime fluttuazioni di densità che alla fine crebbero portando alla formazione delle galassie. Le misure estremamente precise di WMAP relative alle fluttuazioni di densità della materia hanno confermato determinate previsioni della versione più semplice del modello inflazionistico: in altre parole, le fluttuazioni seguono una curva a campana che ha le stesse proprietà su tutto il cielo; inoltre, la mappa del cielo contiene in ugual numero regioni più calde e più fredde. Infine, i dati di WMAP confermano alcune previsioni in base alle quali l’ampiezza delle variazioni di densità su larga scala è leggermente maggiore rispetto a quella su scale più piccole e che la forma dello spazio segue le leggi della geometria euclidea. Di recente, lo stesso Stephen Hawking ha commentato alla rivista New Scientist che l’evidenza trovata da WMAP a favore dell’inflazione è stata la scoperta più emozionante in tutta la sua carriera di fisico.

L’Universo è fatto dal 4,6% di atomi, una frazione maggiore, il 24%, è composta da materia invisibile, denominata materia scura, mentre la parte rimanente e la più dominante, il 71%, è una forma di energia, una sorta di anti-gravità, chiamata energia scura, che permea tutto lo spazio e sembra guidare l’espansione accelerata dell’Universo. Grazie alle osservazioni di WMAP è stato possibile risalire all’epoca di formazione delle prime stelle, ossia quando l’Universo aveva una età di circa 400 milioni di anni. Uno degli obiettivi scientifici del telescopio spaziale di nuova generazione James Webb sarà quello di esplorare in dettaglio questa particolare epoca della storia cosmica per ricavare ulteriori indizi sulla formazione delle stelle più antiche. “L’ultima parola di WMAP segna la fine dell’inizio nella nostra ricerca verso la comprensione dell’Universo” commenta Adam Riess, premio Nobel per la Fisica nel 2011 per aver scoperto gli effetti dovuti all’energia scura sull’espansione dello spazio. Insomma, WMAP ha aperto le porte alla cosmologia di precisione, dunque l’Universo non sarà più lo stesso come prima.


Il video seguente illustra i risultati di WMAP commentati da Charles Bennett


arXiv: Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

arXiv: Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

Un nuovo paradigma sull’Universo delle origini

Alcuni ricercatori della Penn State University hanno sviluppato un modello che tenta di spiegare le fasi iniziali della storia dell’Universo. Grazie a tecniche moderne che si basano sul cosiddetto modello cosmologico della teoria quantistica a loop (loop-quantum cosmology), gli scienziati hanno esteso i concetti della fisica quantistica fin quasi “all’inizio del tempo”. Questo paradigma della teoria quantistica a loop suggerisce, per la prima volta, che le strutture su larga scala che vediamo oggi come galassie o ammassi di galassie si sono originate a partire dalle fluttuazioni quantistiche iniziali emerse nello spaziotempo ed esistite sin già da quando si originò l’Universo quasi 14 miliardi di anni fa. Questi risultati forniscono nuove opportunità osservative che serviranno per verificare i vari modelli cosmologici grazie alle future missioni spaziali che vedranno impiegati i telescopi di ultima generazione.

“Noi umani da sempre cerchiamo di comprendere come si è originato il nostro Universo”,  spiega Abhay Ashtekar. “Stiamo usando il nostro paradigma per capire, in dettaglio, i processi dinamici che la materia e lo spazio subirono durante le fasi primordiali della storia cosmica, fino all’inizio di tutto”. Il paradigma quantistico fornisce un nuovo sistema concettuale e matematico al fine di descrivere la geometria esotica da cui emerse lo spaziotempo e che possiamo descrivere applicando le leggi della meccanica quantistica. Questo modello suggerisce che l’Universo era così compresso fino a raggiungere valori di densità tali che il suo comportamento non può essere descritto né dalle equazioni della relatività generale di Einstein né da una teoria ancora più fondamentale che si basa sulle strani leggi della meccanica quantistica. Si calcola che la densità della materia poteva raggiungere valori dell’ordine di 1094 grammi per centimetro cubico contro la densità di un nucleo atomico che è di 1014 grammi. Nel mondo bizzarro della meccanica quantistica, dove si parla di probabilità piuttosto che di certezza, le proprietà fisiche sono decisamente diverse da quelle del mondo a cui siamo abituati. Tra queste differenze esistono i concetti di tempo così come le proprietà dinamiche di vari sistemi che evolvono nel corso del tempo man mano che interagiscono con la struttura dello spaziotempo quantistico. Oggi, l’informazione più antica che disponiamo della storia cosmica ci viene fornita dalla radiazione cosmica di fondo e risale a quando l’Universo aveva una età di appena 380 mila anni. Da quell’epoca, dopo un periodo di rapida espansione, chiamata inflazione, l’Universo è divenuto molto più fluido rispetto alla sua versione iniziale super compressa. All’inizio della fase inflazionistica, la densità dell’Universo era un trilione di volte inferiore rispetto a quella del periodo delle origini, così che le fluttuazioni quantistiche sono molto meno importanti oggi nel determinare le proprietà dinamiche della materia e della geometria dello spaziotempo su larga scala. Le osservazioni della radiazione cosmica di fondo mostrano che l’Universo è uniforme su larga scala, eccetto per alcune regioni dello spazio che sono più o meno dense. Il modello standard inflazionistico, che si basa sulle equazioni classiche della relatività generale, tratta lo spaziotempo come un continuo regolare. “Il modello inflazionario spiega con successo la radiazione cosmica di fondo, ma questo modello non è completo. Esso si basa sull’idea che l’Universo emerse dal nulla in seguito ad una singolarità iniziale, il Big Bang, che risulta dall’incapacità della relatività generale nel descrivere le condizioni estreme della meccanica quantistica”, spiega Ivan Agullo. “Abbiamo bisogno di una teoria quantistica della gravità, come ad esempio la teoria quantistica a loop, per andare oltre la fisica di Einstein, al fine di catturare la vera essenza dell’origine del nostro Universo”. Alcuni lavori precedenti sulla cosmologia quantistica a loop eseguiti dal gruppo di Ashtekar hanno modificato, per così dire, il concetto del Big Bang con l’idea del Big Bounce in base alla quale l’Universo non emerse dal nulla bensì da materia super compressa che sarebbe già esistita ancora prima. Dunque, anche se le condizioni della meccanica quantistica all’inizio del tempo furono estremamente differenti da quelle descritte dalla fisica classica dopo l’inflazione, il nuovo paradigma introdotto dai fisici della Penn State University permette di rivelare una connessione sorprendente tra i due modelli che tentano di descrivere queste fasi primordiali. Nel momento in cui gli scienziati utilizzano il modello dell’inflazione applicando le equazioni di Einstein per descrivere l’evoluzione dell’Universo, essi trovano che le irregolarità diventano quei “siti cosmici” da cui sono emersi gli ammassi di galassie e le strutture su larga scala che osserviamo oggi. Ma in maniera quasi spettacolare si trova che utilizzando il modello cosmologico quantistico a loop, con le sue relative equazioni, le fluttuazioni fondamentali nel momento del Big Bounce evolvono per divenire, nel corso del tempo, ancora quei siti cosmici che si osservano nella radiazione cosmica di fondo. Insomma, i dati dei ricercatori della Penn State suggeriscono che le condizioni iniziali relative alle fasi primordiali dell’Universo portano in maniera naturale alla nascita delle strutture su larga scala che osserviamo oggi. In questo modo, i ricercatori possono descrivere l’origine delle strutture cosmiche del nostro Universo dall’epoca inflazionaria al Big Bounce, coprendo circa 11 ordini di grandezza in termini di densità di materia e della curvatura dello spaziotempo. In altre parole, si definiscono meglio quelle condizioni iniziali che sarebbero esistite durante l’origine dell’Universo che hanno portato successivamente alla formazione delle strutture cosmologiche in accordo con i dati sulla radiazione cosmica di fondo.

[Press release: The Beginning of Everything: A New Paradigm Shift for the Infant Universe]

arXiv 1: An Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era

arXiv 2: A Quantum Gravity Extension of the Inflationary Scenario

arXiv 3: Perturbations in loop quantum cosmology

arXiv 4: Probability of Inflation in Loop Quantum Cosmology

arXiv 5: The Big Bang and the Quantum

Il tempo ‘prima’ del tempo

Uno dei misteri più affascinanti della moderna cosmologia è quello di capire se l’Universo sia stato caratterizzato da uno stato fisico prima del Big Bang . Di solito, si dice che il Big Bang è stato l’inizio del tutto ma, come afferma il cosmologo e teorico Sean Carroll , la risposta è che non lo sappiamo. Carroll ha introdotto nuove ipotesi che considerano l’esistenza del tempo anche prima del Big Bang, presentando teorie alternative su come si è originato l’Universo.

Questa è un’epoca molto interessante per i cosmologi“, dice Carroll, “è una sorta di età dell’oro per l’astronomia ma purtroppo il modello del Big Bang su cui si basa la cosmologia standard non ha molto senso“. In realtà dobbiamo considerare il fatto che quasi il 96% di cui è fatto l’Universo rimane ancora un mistero al punto che sono stati introdotti termini quali materia scura ed energia scura  proprio per significare l’ignoranza da parte degli scienziati che non riescono a spiegare ancora questi problemi. Un’altra sorpresa deriva dai dati del satellite WMAP  (Wilkinson Microwave Anisotropy Probe) che ha esplorato il cielo per realizzare, con maggiori dettagli, una mappa della radiazione cosmica di fondo, l’eco della grande esplosione iniziale. “Quando si analizzano i dati di WMAP“, dice ancora Carroll, “si trova che l’Universo primordiale appare caldo, denso, con stati di bassa entropia e non sappiamo con precisione perché sia così, è un pò come dire che il nostro Universo non ha un aspetto naturale. Ma la cosa sorprendente e certamente singolare“, continua Carroll, “è che ciò che accade nell’Universo sembra andare in una determinata direzione, dal passato al futuro. Questo dato di fatto viene chiamato dai cosmologi freccia del tempo e deriva dalla seconda legge della termodinamica che ha a che fare con l’entropia“. La seconda legge della termodinamica afferma che i sistemi chiusi passano da uno stato di ordine a uno di disordine al trascorrere del tempo, e questa legge è fondamentale per tutti i processi fisici. Infatti, una dei grandi problemi aperti della cosmologia riguarda le condizioni iniziali dell’Universo: come mai il suo stato fisico era caratterizzato da una bassa entropia? Carroll afferma che proprio questo stato di bassa entropia in prossimità del Big Bang è responsabile di ogni processo fisico successivo e influenza la freccia del tempo, la vita, la morte e la memoria. Insomma, gli eventi accadono con una determinata sequenza temporale e non possono essere invertiti. “Ogni volta che si rompe una tazzina di caffè o si spacca un bicchiere di vetro, si fa cosmologia osservativa“, spiega Carroll. Dunque per rispondere alle domande che riguardano l’origine dell’Universo e la freccia del tempo, dobbiamo prendere in considerazione lo stato fisico dell’Universo prima del Big Bang. “Vogliamo una storia dell’Universo che abbia senso“, continua Carroll, “perché quando incontriamo delle cose che appaiono sorprendenti quello che facciamo è andare a svelare il meccanismo che si cela al di sotto dei processi fisici che poi ci fa comprendere come realmente funzionano le cose“. Di fatto, le attuali teorie non ci permettono di risolvere il mistero dello stato di bassa entropia. Ad esempio, la teoria della relatività generale ci dice che l’Universo si è originato con una singolarità iniziale e non può dimostrare niente se non dopo il Big Bang. Il modello inflazionario, che introduce l’ipotesi secondo la quale l’Universo abbia attraversato una fase di rapida espansione esponenziale subito dopo il Big Bang, non ci è d’aiuto perché peggiora il problema dell’entropia. Anche se esistono modelli alternativi, Carroll sembra favorire l’idea del multiverso che dà luogo alla formazione continua di tanti “piccoli” universi. “Il nostro Universo potrebbe non essere il solo che esista perciò se facciamo parte di un multiverso più grande l’entropia totale sarà data dalla somma di quelle che verranno prodotte attraverso la creazione di tanti universi come il nostro“. Infine, analizzando i dati di WMAP, Carroll afferma che l’Universo sembra essere dotato di una sorta di “impronta digitale cosmica” lasciata dalla formazione di fluttuazioni quantistiche nella radiazione cosmica di fondo. In altre parole, le fluttuazioni sembrano avere una intensità dell’ordine del 10% più forte in una parte del cielo che in un’altra, forse un segnale della formazione di nuovi universi? Ad oggi, tutto questo può sembrare pura teoria ma, forse, le misure più accurate della radiazione cosmica di fondo grazie alla missione del satellite Planck  dell’Agenzia Spaziale Europea (ESA), attualmente in corso, potranno riservarci nuove sorprese (vedasi Enigmi Astrofisici).

Sean Carroll è autore di From Eternity to Here e The Particle at the End of the Universe (vedasi questo post).

Un solo universo o infiniti universi?

Ricollegandomi al precedente post sul tema degli universi multipli, dove ho discusso il concetto di multiverso, volevo segnalare oggi l’interessante libro di Alex VilenkinUn solo mondo o infiniti? Alla ricerca di altri universi, edito da Cortina Raffaello .

Vilenkin è uno dei cosmologi di fama mondiale. Egli ha scritto una lunga serie di articoli che riguardano il modello dell’espansione inflazionistica che si basano sull’idea secondo cui l’Universo potrebbe contenere alcuni difetti topologici dovuti a transizioni di fase, così come vengono descritte dalla teoria delle particelle  e dalla cosmologia quantistica. Oggi il modello inflazionistico mette in risalto una serie di domande quali: Perché lo stato fisico primordiale era così caldo e denso? Come e perché l’Universo si è espanso? Cosa c’era prima del Big Bang? “Il nostro orizzonte cosmico è di 13,7 miliardi di anni-luce e oltre questo orizzonte ci potrebbero essere, forse, altri universi con leggi fisiche completamente diverse dal nostro“, dice Vilenkin. A differenza dei suoi predecessori, egli promuove il concetto d’inflazione eterna e le sue implicazioni che essa determina per il principio antropico. L’idea di Vilenkin è che l’inflazione abbia avuto un inizio ma rimane eterna, producendo in continuazione universi paralleli come vere e proprie “bolle cosmiche”. “Si ritiene che l’inflazione sia quasi terminata nella nostra regione di Universo mentre invece continua in altre regioni dello spaziotempo dando luongo ad un numero infinito di bolle“, aggiunge Vilenkin. Quasi metà del libro è dedicato alla descrizione del modello cosmologico standard e la sua estensione all’espansione inflazionistica. In molti modelli inflazionistici c’è un argomento associato alle fluttuazioni quantistiche di un campo scalare, l’inflatone, per cui ci saranno sempre regioni dello spaziotempo che sono soggette all’inflazione e altre in cui essa non avviene e, in un sottoinsieme di queste, esisteranno universi che hanno proprietà piuttosto simili al nostro Universo. Dunque, date le assunzioni basi della teoria quantistica dei campi, l’inflazione eterna sembra quel processo più ragionevole rispetto ai tanti modelli inflazionistici proposti anche se non è del tutto assodato. Se l’inflazione eterna ha luogo, allora Vilenkin è convinto che esisteranno infinite configurazioni di universi ognuno dei quali saranno caratterizzate da proprie costanti fisiche della natura. Se tutto questo poi sia vero oppure no dipenderà dal modello, dalla natura stessa del campo inflatone e dai dettagli della teoria quantistica della gravità. A tal proposito, Vilenkin affronta una parte del libro dando una breve descrizione della teoria delle stringhe. Ma a mio parere, non ci dobbiamo dimenticare che la Fisica è una disciplina osservativa, basata sul metodo sperimentale. Oggi non siamo in grado di osservare altri big bang o regioni di spazio soggette ad una eventuale inflazione. Se queste esistono, si troveranno comunque al di fuori del nostro orizzonte osservativo, perciò sarà difficile verificare la loro presenza.

L’Universo raccontato dal professor Frè

Sin dagli albori delle antiche civiltà, l’uomo ha sempre rivolto lo sguardo verso il cielo allo scopo di trovare, forse, una relazione che collegasse gli eventi terreni e gli astri attraverso gli dei. Con il solo ausilio dell’occhio nudo, gli antichi edificavano edifici o enormi strutture in pietra per osservare i movimenti del Sole, dei pianeti e delle stelle, e seguire l’alternarsi delle stagioni. Insomma per gli antichi il cielo era una sorta di gigantesco orologio sopra le teste che serviva per studiare e prevedere il movimento delle stelle, spesso legato al destino degli uomini e della storia. Ma dall’epoca in cui Galileo puntò il suo cannocchiale verso il cielo sono passati quattro secoli di osservazioni e di scoperte che ci hanno permesso di comprendere, almeno in gran parte, come funziona l’Universo. Nel libro del professor Pietro Frè che voglio segnalare oggi, Il fascino oscuro dell’inflazione. Alla scoperta della storia dell’Universo, edito da Springer-Verlag, viene raccontata la storia dell’astronomia, partendo dalle idee dell’Universo di Aristotele , che erano limitate ad un mondo statico, eterno e di dimensioni finite, fino alla visione più moderna di un Universo dinamico, immenso ed in espansione accelerata, creato non più da una singolarità iniziale, bensì da una piccolissima fluttuazione quantistica, così come vuole la cosmologia di stringa. Il progresso compiuto nel secolo scorso non ha paragoni rispetto ai secoli precedenti, basti pensare alla formulazione della teoria generale della relatività, che spiega la struttura dell’Universo su grande scala, e alla nascita della meccanica quantistica, l’altro modello matematico che invece ci descrive il mondo degli atomi e delle particelle. La scoperta dell’espansione dell’Universo, assieme alla rivelazione, per caso, della radiazione cosmica di fondo, cioè l’eco della grande esplosione iniziale, costituiscono i due pilastri fondamentali su cui si basa il modello cosmologico standard, o del Big Bang, che, però, presenta delle lacune. Oggi, l’inflazione rappresenta il modello teorico che meglio descrive l’evoluzione dell’Universo subito dopo le primissime fasi iniziali e permette di rivelare i misteri delle leggi fisiche su scale atomiche e in condizioni estreme di temperatura ed energia che sono caratteristiche del mondo delle stringhe e della gravità quantistica .

Quanto tempo rimane alla fine dell’Universo?

L’energia scura costituisce il 73% circa del contenuto materia-energia dell’Universo e perciò da essa dipende il destino del nostro Universo. I cosmologi hanno introdotto vari scenari che, però, sono tutti legati alle proprietà di questa componente enigmatica: uno di questi si basa sul modello del Big Rip  (vedasi Enigmi Astrofisici). Questo interessante argomento è stato di recente affrontato da cinque ricercatori delle University of Science and Technology of China, dell’Institute of Theoretical Physics at the Chinese Academy of Sciences, della Northeastern University e della Peking University.

Per millenni, gli uomini si sono sempre chiesti da dove veniamo e dove andiamo, domande fondamentali le cui risposte oggi cominciano ad avere una propria definizione grazie soprattutto ai progressi della cosmologia moderna degli ultimi trent’anni. Il modello standard cosmologico, noto anche come “Hot Big Bang + Inflation”, è stato sviluppato per spiegare l’origine e l’evoluzione dell’Universo, ma per capire quale sarà la sua fine gli scienziati devono comprendere la natura e l’essenza dell’energia scura. Dunque, la domanda è: quanto siamo distanti dalla fine? I calcoli, che si basano sulle attuali osservazioni, suggeriscono che mancano al meglio 103,5 miliardi di anni al Big Rip, mentre al peggio ci vogliono almeno 16,7 miliardi di anni. La domanda che segue è: cosa ne sarà delle strutture cosmiche, quali stelle e galassie? Se l’energia scura diventerà sempre predominante, si arriverà ad un momento in cui ogni singola struttura legata dalla gravità sarà disgregata. Ad esempio, nell’ipotesi pessimistica, la Via Lattea terminerà di essere una galassia tra 32,9 miliardi di anni; due mesi prima del “giorno del giudizio” la Terra sarà stata distrutta dal Sole; cinque giorni prima, la Luna sarà stata distrutta dalla Terra; il Sole sarà distrutto 28 minuti prima della fine di tutto e 16 minuti prima della fine del tempo, la Terra esploderà. Una cosa è comunque certa: nonostante ad oggi sappiamo poco o nulla sulle proprietà dell’energia scura, abbiamo ancora molto tempo prima della fine del tempo.

Science China: Dark energy and fate of the Universe