Archivi tag: relatività

Il doppio senso della freccia del tempo

È noto che le leggi della fisica sono valide procedendo sia in avanti che indietro nel tempo. Ma la domanda è: perchè il tempo sembra muoversi in una sola direzione? Secondo alcuni studi recenti, una possibile risposta potrebbe portare a rivelare i segreti della massa mancante dell’Universo. Continua a leggere Il doppio senso della freccia del tempo

Pubblicità

Orologi perfetti? Solo fiction!

Può il tempo essere misurato in maniera estremamente precisa, sempre e in qualsiasi luogo? La risposta potrebbe sorprendere persino gli orologiai. Oggi, un gruppo di fisici delle università di Varsavia e Nottingham ha dimostrato che quando abbiamo a che a fare con accelerazioni molto grandi, nessun orologio sarà mai in grado di indicare la vera misura del tempo, un concetto noto in fisica come “moto proprio”. Continua a leggere Orologi perfetti? Solo fiction!

Le ‘tracce’ dell’inflazione impresse nella radiazione cosmica di fondo

La notizia annunciata dai ricercatori dell’Harvard CMB Group che lavorano all’esperimento BICEP2 in merito alla “prima evidenza diretta” del processo dovuto all’inflazione cosmica, ossia quel meccanismo fisico che avrebbe dato forma e volume al nostro Universo avvenuto in una piccolissima frazione di secondo subito dopo il Big Bang, ha fatto in queste ultime ore il giro del web e i vari media, sia quelli online che offline, si sono scatenati cercando di riportare il significato di una “scoperta” che, però, dovrà essere confermata. Qui di seguito proverò a fare il punto della situazione mettendo in evidenza l’importanza del risultato scientifico e quali potranno essere le sue implicazioni nell’ambito della cosmologia.

Il modello standard della cosmologia si basa su una serie di parametri che sono legati alla struttura e all’evoluzione dell’Universo. Questi parametri devono essere determinati dalle osservazioni, e non dalla/e teoria/e, e per fare questo occorre studiare ed analizzare la luce più antica che siamo in grado di osservare: la radiazione cosmica di fondo, una sorta di “eco primordiale” residuo della grande esplosione iniziale, il Big Bang. Essa contiene così tante informazioni al punto che rappresenta l’unica fonte da cui possiamo ricavare preziosi indizi sullo stato fisico in cui si trovava l’Universo delle origini circa 400 mila anni dopo il Big Bang. Negli ultimi vent’anni, una serie di esperimenti condotti dallo spazio mediante satelliti dedicati ci hanno fornito mappe del cielo della radiazione cosmica di fondo sempre più dettagliate. Esse vengono rappresentate in termini della distribuzione di minuscole variazioni di temperatura su varie scale angolari  e contengono così tante informazioni che gli scienziati sono stati in grado di misurare con una precisione senza precedenti il contenuto di materia e di energia di cui è composto l’Universo, di determinare la sua età e il tasso di espansione dello spazio. Ora, se da un lato la singolarità iniziale del Big Bang rappresenta il mistero più profondo della moderna cosmologia e rimane, al momento, inaccessibile, dall’altro gli scienziati vogliono capire come hanno avuto origine le strutture cosmiche da cui si sono formate nel corso del tempo le stelle, le galassie e gli ammassi di galassie. Oggi, i dati osservativi supportano uno scenario, noto come inflazione cosmica, in base al quale l’Universo subì una fase di improvvisa espansione esponenziale con una velocità superiore a quella della luce, in un piccolissimo intervallo di tempo che risulta difficile immaginare, cioè da 10-36 a 10-34 secondi subito dopo il Big Bang, durante il quale lo spazio aumentò il suo volume di almeno un fattore 1050 estendendo quelle minuscole fluttuazioni quantistiche primordiali su scale cosmiche di cui possiamo vedere oggi le ‘tracce’ impresse nella radiazione cosmica di fondo. Comprendere, quindi, l’inflazione cosmica e soprattutto verificare se essa sia effettivamente avvenuta, rappresenta una sfida di fondamentale importanza per capire come si è formato l’Universo e, possibilmente, preservare il modello cosmologico standard al fine di dare una spiegazione quasi naturale all’isotropia della radiazione cosmica di fondo, alla geometria euclidea dello spazio e alle fluttuazioni di densità primordiali da cui hanno avuto origine le strutture cosmiche.

modiE_modiBPer studiare queste “impronte digitali cosmiche”, e quindi verificare ‘indirettamente’ se il processo dell’inflazione sia avvenuto o meno, occorre studiare la luce più antica ed in particolare le sue proprietà di polarizzazione. A differenza delle minuscole variazioni della temperatura presenti nella radiazione cosmica di fondo, la radiazione polarizzata viene generata dalla diffusione dei fotoni a causa degli elettroni liberi. In generale, la polarizzazione ha due componenti geometriche (per convenzione diremo Nord-Sud e Est-Ovest) che dipendono dalla scelta arbitraria del sistema di coordinate. Esistono due direzioni che sono associate sia all’orientamento che all’ampiezza. Le ampiezze della polarizzazione sono modulate nello spazio dal piano dell’onda nel quale avviene l’oscillazione. Nella figura si vede che il piano nel quale oscilla l’onda è diretto lungo la direzione Nord-Sud. Se la polarizzazione è perpendicolare o parallela a questa direzione, essa viene chiamata modo-E, mentre invece se essa è ruotata di 45° viene chiamata modo-B. Le perturbazioni di densità generano polarizzazione parallela, e perciò modi-E, mentre le onde gravitazionali generano entrambe e perciò hanno una ulteriore componente B di polarizzazione. Dunque, i modi-B rappresentano un segnale dell’inflazione cosmica e sono determinati dalla densità delle onde gravitazionali primordiali. In particolare, la loro misura è estremamente complicata non solo dal fatto che il segnale associato al modo-E è relativamente più forte, ma anche da una serie di altri fattori che generano un grado di confusione.

Le figure illustrano due simulazioni relative ai modi-E (a sinistra) e ai modi-B (a destra) della polarizzazione. I modi-B hanno una proprietà speciale in quanto possiedono una direzione privilegiata.

Ora, nonostante gli eccellenti risultati ottenuti recentemente dal satellite Planck, esistono tutta una serie di programmi scientifici condotti da terra, come ad esempio il South Pole Telescope in Antartide, l’Atacama Cosmology Telescope e lo strumento Q/U Imaging Experiment Telescope in Cile, che hanno lo scopo, tra l’altro, di fornire ulteriori dati che non sono stati ottenuti dai satelliti, in particolare per quanto riguarda le misure della polarizzazione dei modi-B. Dunque, nel caso dello strumento BICEP2, il cui obiettivo è quello di misurare i modi-B della polarizzazione della radiazione cosmica di fondo con la migliore sensibilità mai raggiunta prima, il gruppo di ricercatori che lavorano all’esperimento hanno annunciato, nei giorni scorsi, di aver rivelato la “prima evidenza ‘diretta’ dell’inflazione cosmica”, misurando cioè un segnale decisamente più forte di quello previsto dai modelli e che certamente segnerà una svolta verso la quale i teorici dovranno dirigersi per affinare la ricerca nell’ambito della cosmologia inflazionistica e della gravità quantistica. Inoltre, il risultato implicherebbe che la scala del processo dell’inflazione cosmica sia circa un fattore 100 al di sotto della scala di Planck, che definisce il limite di validita’ delle leggi fisiche a noi note, cioè meccanica quantistica e relatività.

Naturalmente, prima di dichiarare che si tratti di un grande annuncio o di una grande scoperta, anche da parte dei ricercatori più attenti, bisogna ricordare che i dati dovranno essere confermati e analizzati prima che si possano considerare una prova definitiva ed inconfutabile. Di seguito, le reazioni degli ottimisti e di coloro più cauti che si sono pronunciati sui risultati del gruppo di Harvard.

  • Gli ottimisti:

“This is huge, as big as it gets” —Marc Kamionkowski in The New York Times

“I think that if this stays true, it will go down as one of the greatest discoveries in the history of science.” —Max Tegmark in The New York Times

“The implications for this detection stagger the mind. We are measuring a signal that comes from the dawn of time.” —Jamie Bock in Quanta magazine

“If confirmed, it would be one of the absolute greatest discoveries in cosmology.” —Frank Wilczek in Quanta

“When I got the call, I had to ask if it was real. To me, this is bigger than the Higgs boson.” —Marc Kamionkowski in Time

“If this holds, it’s huge, comparable in magnitude to the discovery of the Higgs boson. Probably even more exciting because of the surprise element.” —Adam Falkowski in his blog “Résonaances”

“If it’s confirmed by other groups, it’s worth a Nobel.” —Avi Loeb in Time

“It’s just amazing. You can see back to the beginning of time.” —Lawrence Krauss to the AP

“In some [models of inflation], the waves are so weak they could never be detected. To see them turn up is beautiful.” —Alan Guth, one of the pioneers of inflation, in Time

“Although I’m trying to be sober, it’s extremely exciting to think that we may be seeing a new relic from 10-37seconds after the Big Bang, and even more so to think that I may have had some sort of role in the advance.” —Kamionkowski in Quanta

“It teaches us something crucial about how our universe began. It’s an amazing achievement that we humans, doing science systematically for just a few hundred years, can extend our understanding that far.” —Sean Carroll to CNN

“We have for the first time a detection for the mythical gravity wave signal that people have been searching for so hard, for so long.” —Clem Pryke, co-author of the new study, to CNN

  •  I più cauti:

My role in this process has been to remain calm at all times. The time to celebrate, I think, will be once we have published our results and presented them to the scientific community. —John Kovac, leader researcher of the BICEP2 group, in Nature

The BICEP result, if correct, is a spectacular and historic discovery… In fact, it all seems far too good to be true. And perhaps it is: check back after another experimental team is able to check the BICEP findings, and then we can really break out the champagne. —Liam McAllister at The Reference Frame

If this is true, this is a moment of understanding of nature of such a magnitude that it just overwhelms and let’s just hope that it’s not a trick. —Andrei Linde, another pioneer of inflation, to CNN

“If this holds” is the central question now. This sort of experiments is difficult and subject to pesky instrumental effects and systematic effects due to foreground emission. It’s not impossible that BICEP screwed up; in fact, experts point out some worrying aspects of the data…So I would say at this point it’s fifty-fifty. —Adam Falkowski in his blog “Résonaances”

“So we will need to wait and see before we jump up and down.” —Lawrence Krauss in The New York Times

“We should be skeptical. Alone this finding is tantalizing, but not definitive.” —Lawrence Krauss in Wired

Insomma, mai come oggi, siamo interessati a rispondere ad alcune delle domande più fondamentali sulla natura dell’Universo: Come appariva l’Universo all’inizio dei tempi? Come ha fatto l’Universo ad evolvere verso lo stato fisico attuale? Lo studio della polarizzazione ci permette di ricavare molte più informazioni di quelle che possiamo ottenere dalla mappa relativa alle fluttuazioni di temperatura. La futura ricerca dei modi-B associati alla propagazione delle onde gravitazionali impresse nella radiazione cosmica di fondo rappresenta uno strumento di vitale importanza perchè ci permette di discriminare o affinare i vari modelli che tentano di descrivere l’origine dell’Universo. Nel frattempo, rimaniamo in attesa dei nuovi dati di Planck proprio sulla polarizzazione. Le sorprese non mancheranno.

CfA: First Direct Evidence of Cosmic Inflation (News Conference Video)
arXiv: BICEP2 I: DETECTION OF B-mode POLARIZATION AT DEGREE ANGULAR SCALES

Alcuni articoli sul web:

Per maggiori approfondimenti su questo e altri argomenti: L’Universo Infante

I fisici uniti per risolvere un problema teorico della meccanica quantistica

Un professore assistente di fisica presso l’Indiana University-Purdue University Indianapolis (IUPUI) farà parte di un gruppo internazionale di ricercatori che saranno impegnati in un grande sforzo teorico per risolvere, si fa per dire, il problema dell’incompletezza della meccanica quantistica, un sogno che fu perseguito inizialmente da Albert Einstein a successivamente da altre menti brillanti del secolo scorso.

Stiamo parlando di Le Luo, uno scienziato specializzato in fisica atomica e ottica quantistica che ha una buona esperienza nella manipolazione di ioni intrappolati. Un finanziamento lo aiuterà a collaborare con un gruppo di ricercatori dell’University of Science and Technology in Cina (USTC), dell’Harvard University e di altre Università europee per realizzare quello che viene chiamato il “loophole-free test” delle disuguaglianze di Bell, una delle argomentazioni fondamentali della meccanica quantistica. “Questa ricerca durerà almeno cinque anni o più” spiega Luo. “Se avrà successo, potrebbe avere delle ricadute importanti nell’ambito della meccanica quantistica così come nel settore dell’informazione scientifica di tipo quantistico che renderà la tecnologia informatica più sicura ed efficiente rispetto a quella attuale”. La teoria dei quanti afferma che non esiste una realtà locale. In altre parole, un oggetto non ha valori prefissati finchè non viene osservato. Fino ad allora, si parla solo di probabilità. La teoria suggerisce inoltre che una singola misura può influenzare due sistemi fisici distinti e separati da una certa distanza e che sono descritti da “stati quantistici correlati” (entanglement). Per esempio, la teoria afferma che se due particelle correlate (ioni, protoni, elettroni e così via) vengono spedite a grande distanza, una misura eseguita su una particella in un determinato punto dovrebbe indicare gli stati, ad esempio posizione e velocità, di entrambe le particelle, non importa quanto esse siano distanti. La teoria della relatività afferma, invece, che una situazione di questo tipo è impossibile dato che le particelle dovrebbero comunicare tra di loro con una velocità superiore a quella della luce. Quando si prende in considerazione la realtà locale per le leggi della fisica, la teoria quantistica potrebbe non essere completa, così come pensava Einstein. Ma allora cos’è la realta? Cos’è la materia? Queste domande fondamentali e altre collegate alla meccanica quantistica hanno impegnato gli scienziati da diverse generazioni. “Si spera che l’esperienza di questo gruppo di fisici provenienti da tutto il mondo sarà tale da ottenere qualche progresso scientifico in modo da rispondere a queste grandi domande” dice Luo. Le argomentazioni sulla realtà locale della meccanica quantistica risalgono ai primi anni del ‘900. Einstein assieme a Boris Podolsky e Nathan Rosen furono i primi ad analizzare pubblicamente negli anni ’30 il problema dell’incompletezza della meccanica quantistica, un approccio che divenne noto come ‘paradosso EPR’. Nel 1964, il fisico John Bell fornì una analisi dettagliata del paradosso EPR che portò all’ormai famoso risultato noto come ‘disuguaglianza di Bell’ che indica come devono essere condotti in maniera specifica gli esperimenti sulla realtà locale. I ricercatori hanno iniziato negli anni ’80 ad utilizzare i fotoni in modo da verificare se Einstein aveva o meno ragione. Da allora, gli scienziati hanno considerato vari stati quantistici per dimostrare la validità della teoria ma continuavano ad ottenere sempre loophole nei loro metodi e perciò non ottenevano risultati definitivi. Secondo Luo, utilizzando diversi sistemi quantistici, tra cui fotoni, ioni e altre strutture solide complesse, si potrà verificare sperimentalmente, e per la prima volta, la teoria dei quanti fino a grandi distanze, anche dell’ordine di decine di chilometri, e si potranno così eliminare, si spera, tutti i loophole in modo tale da evitare che due oggetti possano comunicare tra di loro.

IUPUI press release: Physics Researcher Part of New Effort to Finally Complete Quantum Theory

Un esperimento di entanglement quantistico per lo studio dello spaziotempo

Alcuni fisici hanno proposto un esperimento per verificare quali sono le previsioni della meccanica quantistica quando si tenta di descrivere le proprietà dello spaziotempo. La proposta arriva da un gruppo internazionale di ricercatori provenienti dalla Svizzera, dal Belgio, dalla Spagna e da Singapore e si basa sulla disuguaglianza denominata “hidden influence inequality”.

“Siamo interessati a capire se possiamo spiegare alcuni fenomeni fisici senza sacrificare il nostro senso comune delle cose che avvengono in uno spaziotempo continuo e regolare a cui siamo abituati” spiega Jean-Daniel Bancal del Centre for Quantum Technologies. Il fatto interessante è che sembra esistere una prospettiva reale per realizzare un tale esperimento. Sin da quando venne introdotta agli inizi degli anni ’20, la teoria dei quanti prevede un comportamento bizzarro delle particelle elementari, come ad esempio l’entanglement quantistico di due particelle che si comportano come se fossero una sola anche quando si trovano a grandi distanze. Questo fenomeno sembra violare il nostro senso comune di causa ed effetto, un comportamento che i fisici chiamano ‘non locale’. Inizialmente fu Einstein che mise l’attenzione sulle preoccupanti implicazioni di quanto previsto dalla meccanica quantistica e che egli stesso definì come “una azione fantasma a distanza”. Negli anni ’60, John Bell propose il primo esperimento per verificare se il fenomeno dell’entanglement quantistico avesse effettivamente senso. Il test, denominato “disuguaglianza di Bell”, permette di verificare se il comportamento di due particelle dipenda da alcune condizioni iniziali nascoste. Secondo Bell, nessuna teoria fisica locale e deterministica a variabili nascoste può riprodurre le previsioni della meccanica quantistica. Se le misure violano la disuguaglianza di Bell, allora coppie di particelle possono fare ciò che vogliono in base ai principi della meccanica quantistica. Successivamente, a partire dagli anni ’80, vari esperimenti hanno trovato ripetutamente la violazione della disuguaglianza di Bell dando così ragione alla teoria dei quanti. Tuttavia, una serie di altri esperimenti convenzionali sulle disuguaglianze di Bell non hanno eliminato del tutto la speranza di contravvenire ai principi della relatività. Alcuni test hanno già dimostrato che nel caso in cui si prendono in considerazione i segnali luminosi per descrivere i fenomeni fisici, si trova che essi dovrebbero propagarsi con una velocità superiore a quella della luce, addirittura con un fattore di dieci mila volte superiore. Ma questo crea un grosso problema per la teoria della relatività di Einstein dato che la velocità della luce rappresenta, come tutti sappiamo, una costante universale e quindi un limite invalicabile. Nonostante ciò, i fisici hanno trovato una scappatoia: tali segnali potrebbero rappresentare delle cosiddette “variabili nascoste” utili a nulla e perciò non violare i principi della relatività. Però, quando consideriamo il regime quantistico questa disuguaglianza si dimostra non vera. Ad esempio, per derivare la disuguaglianza di Bell nel caso dell’entanglement di quattro particelle, i ricercatori hanno considerato tutti i possibili comportamenti delle quattro particelle che sono connesse da certe variabili nascoste e che si muovono con velocità finite. Da un punto di vista matematico, queste variabili nascoste definiscono un sistema a 80 dimensioni. L’area di verificabilità della disuguaglianza di Bell è definita dal bordo sotteso dall’ombra in uno spazio a 44 dimensioni proiettata dal sistema a 80 dimensioni. I ricercatori hanno dimostrato che le previsioni della meccanica quantistica possono stare al di fuori di questa regione d’ombra il che vuol dire che si sta andando contro una delle assunzioni. In altre parole, al di fuori di questa regione, le variabili non possono rimanere più nascoste oppure devono essere dotate di una velocità infinita. La domanda è: cosa succede se viene confermata la natura quantistica del nostro mondo? Cosa vuol dire? Abbiamo due scelte: la prima sembra sfidare la relatività e rendere visibili le variabili nascoste, il che implica accettare una comunicazione in cui i segnali luminosi si propagano con velocità superiori a quella della luce; la seconda vuole che le variabili nascoste siano infinitamente veloci oppure che debba esistere qualche processo che ha un effetto equivalente quando viene osservato nel nostro spaziotempo. Il test attuale non è in grado di fare la distinzione. Comunque sia, in entrambi i casi ciò implicherebbe che l’Universo sia fondamentalmente non locale nel senso che ogni bit di Universo può essere connesso istantaneamente ad ogni altro bit situato in un’altra parte dello spazio. Certamente si tratta di soluzioni estreme che vanno al di là del nostro senso comune ma sono preferibili al caso in cui la comunicazione tra due eventi avviene con una velocità superiore a quella della luce. Insomma, i risultati di questo esperimento rafforzano l’idea in base alla quale le correlazioni quantistiche sorgono in qualche modo al di fuori dello spaziotempo, nel senso che nessuna storia nello spazio e nel tempo può descriverle.

Blog: Spreadquantum

[Press release: Looking beyond space and time to cope with quantum theory]

J-D. Bancal, S. Pironio, A. Acín, Y-C. Liang, V. Scarani & N. Gisin (2012). Quantum non-locality based on finite-speed causal influences leads to superluminal signalling Nature Physics DOI: http://dx..org/10.1038/NPHYS2460

Jean-Daniel Bancal, Stefano Pironio, Antonio Acin, Yeong-Cherng Liang, Valerio Scarani, Nicolas Gisin (2012). Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling Nature Physics arXiv: arXiv:1110.3795
ResearchBlogging.org

La forma dello spazio quantistico secondo Shing-Tung Yau

E’ stato detto più volte che la teoria delle stringhe viene considerata come la miglior teoria per descrivere tutte le leggi della natura, dal microcosmo al macrocosmo. Secondo questa teoria, l’Universo è caratterizzato da 10 dimensioni: quattro sono le dimensioni dello spaziotempo descritte dalla teoria della relatività e le restanti sei, dette anche dimensioni extra, sono arrotolate o attorcigliate in uno spazio multidimensionale le cui forme sono descritte dalle varietà geometriche degli spazi di Calabi-Yau le cui dimensioni sono milioni di milioni di milioni di volte più piccole di un elettrone. Nel 1976 Shing-Tung Yau ha conquistato la Medaglia Fields, una sorta di premio Nobel dei matematici, per aver dimostrato l’esistenza di queste forme complesse che portano il suo nome, spazi invisibili la cui geometria può essere la chiave definitiva per comprendere i segreti più profondi del cosmo. Nel suo libro che mi piace segnalare oggi “La forma dello spazio profondo. La teoria delle stringhe e la geometria delle dimensioni nascoste dell’universo“, edito da Il Saggiatore e scritto insieme al giornalista scientifico Steve Nadis, si ripercorrono le tappe del percorso scientifico che hanno portato Yau alla formulazione di una teoria rivoluzionaria introducendo una nuova geometria dell’Universo. L’ipotesi delle dimensioni extra, che tocca varie discipline quali la fisica, la matematica e la geometria, suggerisce non solo che i nuovi spazi possano essere effettivamente reali, ma che la realtà stessa risulta più affascinante di quanto noi esseri umani possiamo immaginare. Insomma, l’ipotesi delle dimensioni extra della teoria delle stringhe potrebbe essere la chiave per comprendere i segreti più nascosti dell’Universo.

Le 10 teorie più ‘creative’ della cosmologia moderna

La cosmologia studia l’Universo ma allo stesso tempo essa rappresenta una delle discipline più creative e bizzarre della scienza. I cosmologi spesso si ‘divertono’ ad introdurre delle ipotesi, modelli e teorie fantastiche e suggestive, nella maggior parte dei casi non verificabili sperimentalmente, che tentano comunque di dare una spiegazione scientifica sull’origine dell’Universo. Vediamo allora qui di seguito una breve presentazione delle 10 teorie più ‘creative’ della cosmologia moderna.

1. Brane in collisione

Il nostro Universo potrebbe essere racchiuso in una sorta di gigantesca membrana che fluttua in uno spazio multidimensionale e che ciclicamente va in rotta di collisione con la membrana di un universo parallelo? Secondo il modello del ‘mondo-brana’ della teoria delle stringhe, esistono altre dimensioni spaziali extra dello spazio che sono solamente raggiungibili dai gravitoni mentre noi siamo confinati nel nostro universo-brana caratterizzato dalle tre dimensioni a cui siamo abituati. Neil Turok dell’Università di Cambridge e Paul Steinhardt dell’Università di Princeton hanno provato a spiegare il Big Bang come conseguenza della collisione di due brane. Queste collisioni si ripetono e danno luogo ad un nuovo ‘big bang’ perciò, se il modello ciciclo è corretto, il nostro Universo e gli altri universi potrebbero essere eterni (vedasi Idee sull’Universo).

2. Universi che evolvono

Quando la materia viene compressa fino a raggiungere densità estreme al centro di un buco nero, essa può rimbalzare all’indietro e dar luogo ad un ‘nuovo universo neonato’. Qui, le leggi della fisica potrebbero essere differenti rispetto a quelle dell’universo da cui si origina e ciò determina una sorta di evoluzione di universi, una idea suggerita da Lee Smolin del Perimeter Institute. Gli universi in cui esistono tanti buchi neri produrranno tanti universi neonati e alla fine essi saranno la popolazione dominante del multiverso. Se poi viviamo in un universo tale da possedere leggi e costanti fisiche che ottimizzano la produzione dei buchi neri, questa rimane una domanda aperta.

3. Uno spaziotempo superfluido

Una delle teorie più avanzate della moderna cosmologia suggerisce che lo spaziotempo è in definitiva una sostanza superfluida che ‘scorre’, per così dire, con una viscosità nulla. Dunque, se l’Universo è dotato di un moto di rotazione, allora lo spaziotempo superfluido dovrebbe essere caratterizzato da vortici, secondo Pawel Mazur dell’Università della Carolina del Sud e George Chapline del Lawrence Livermore Laboratories. Questi vortici rappresenterebbero quei ‘siti cosmici’ dove si sono formate le prime strutture che hanno successivamente dato luogo alla formazione delle galassie. Mazur suggerisce che il nostro Universo sarebbe nato dal collasso gravitazionale di una stella dove la combinazione della materia stellare con lo spazio superfluido avrebbero dato luogo all’energia scura, quella misteriosa forza che sta causando una accelerazione all’espansione dell’Universo.

4. Il ‘nostro’ Universo

Perché il nostro Universo possiede le “giuste” leggi della fisica da permettere l’esistenza della vita? Se le costanti fisiche fossero poche non avremmo più stelle, o materia o e, forse, l’Universo durerebbe solo un battito di ciglia. Una risposta a questa domanda è il principio antropico: in altre parole, l’Universo che vediamo deve ospitare la vita altrimenti noi non saremmo qui ad osservarlo. Di recente, questa idea ha avuto molti consensi perché il modello dell’inflazione cosmica suggerisce che dovrebbero esistere una infinità di universi là fuori e la teoria delle stringhe indica che questi infiniti universi devono essere caratterizzati da altrettante infinite leggi fisiche. Bisogna, però, dire che molti cosmologi non accettano il principio cosmologico perchè da un lato non si tratta di vera e propria scienza e dall’altro non fornisce  previsioni che possono essere verificate sperimentalmente.

5. Una questione di gravità

La materia scura potrebbe non essere in definitiva una sostanza fisica ma legata ad un diverso comportamento della forza di gravità. La teoria MOND (MOdified Newtonian Dynamics), proposta da Mordehai Milgrom, suggerisce che la gravità non diventa più debole con l’aumentare della distanza così come vuole la legge della gravitazione universale. Questa sorta di ‘gravità potente’ potrebbe sostituirsi alla materia scura che tiene unite le galassie e gli ammassi di galassie visto che altrimenti si disperderebbero nello spazio. Una nuova formulazione della teoria MOND, consistente con le osservazioni, ha raccolto vari consensi da parte degli scienziati nonostante non descriva alcune proprietà della radiazione cosmica di fondo.

6. Un ‘fantasma’ cosmico

Tre misteri della cosmologia moderna potrebbero essere considerati come un tutt’uno. Dopo la revisione della teoria della relatività generale, un gruppo di fisici hanno trovato una strana sostanza che emerge dalla loro teoria: il cosiddetto “condensato fantasma”. Questa sostanza è in grado di produrre una forza gravitazionale repulsiva che guida, per così dire, l’inflazione cosmica per poi generare una accelerazione dello spazio che viene attribuita all’energia scura. In più, se questa sostanza si aggrega può formare la materia scura (vedasi Enigmi Astrofisici).

7. Un ‘piccolo’ universo

La mappa a ‘spot’ della radiazione cosmica di fondo presenta una peculiarità sorprendente: ci sono pochi ‘spot’ di grande dimensione. Una possibile spiegazione è data dal fatto che l’Universo potrebbe essere ‘piccolo’, così piccolo che, tornando all’epoca in cui si è originata la radiazione cosmica, non è stato in grado di trattenere, per così dire, questi enormi ‘blob’. Se ciò è vero, questo vuol dire che lo spazio si deve essere ‘riavvolto’, in qualche modo, su se stesso. Ma l’ipotesi più strana è che l’Universo abbia una forma a imbuto. La curvatura dello spazio piegata all’indietro potrebbe determinare la forma geometrica degli spot di piccole dimensioni facendogli assumere forme più ellittiche come quelle ossevate.

8. Più veloci della luce

Come mai regioni opposte dell’Universo mostrano lo stesso aspetto? E’ un vero e proprio enigma dato che le regioni più distanti dell’Universo osservabile oggi non dovrebbero essere state mai in contatto tra loro. Anche se andiamo all’inizio del tempo quando queste aree di cielo si trovavano molto vicine tra loro, si pensa che non ci sia stato abbastanza tempo per cui la luce, o forse qualcosa d’altro che ignoriamo, abbia viaggiato da una regione all’altra. E questo discorso vale anche per la distribuzione della temperatura e della densità. Si pensa che una soluzione è che la luce si sia propagata molto più velocemente, anche se per ammettere una tale ipotesi dovremmo rovesciare la teoria della relatività.

9. Neutrini sterili  

La materia scura potrebbe essere costituita dalle particelle più elusive che siano mai state immaginate: i neutrini sterili. Si tratta di particelle ipotetiche, più pesanti, insomma una specie di cugini dei normali neutrini che dovrebbero interagire con la materia solo attraverso effetti di tipo gravitazionale, un processo che li rende essenzialmente difficili da rivelare. Nonostante ciò, i neutrini sterili potrebbero avere le giuste proprietà per formare la cosiddetta materia scura “tiepida” e muoversi con velocità dell’ordine di qualche chilometro al secondo. Queste particelle esotiche potrebbero poi aiutare, per così dire, la formazione delle stelle e dei buchi neri nell’Universo primordiale e potrebbero essere la causa che spinge le stelle di neutroni a girovagare attorno alla nostra galassia.

10. Come nel film..Matrix 

Forse, il nostro Universo non è reale. Il filosofo Nick Bostrom ha suggerito una ipotesi in base alla quale noi viviamo all’interno di una simulazione creata al computer. Insomma, gli universi sarebbero delle simulazioni e dunque noi siamo abbastanza fortunati a vivere all’interno di una di esse. Ma allora, tutte le stranezze cosmologiche, come la materia scura o l’energia scura, sono semplicemente degli artefatti creati apposta per mascherare alcune inconsistenze che sono presenti nella simulazione.

More info: New Scientist