Archivi tag: quantum fluctuations

String Theory & Cosmology: New Ideas Meet New Experimental Data

This is the golden age of cosmology. Once a philosophical subject, cosmology has burgeoned into a precision science as ground and space-based astronomical observations supply a wealth of unprecedently precise cosmological measurements. Questions that were recently the stuff of speculation can now be analyzed in the context of rigorous, predictive theoretical frameworks whose viability is determined by observational data. To address key questions about our universe, especially at the energy scales characteristic of its earliest moments, one must invoke a theory of quantum gravity, such as string theory. Conversely, observational cosmology is our most promising window for testing fundamental theories at ultra-high energies. Continua a leggere String Theory & Cosmology: New Ideas Meet New Experimental Data

Alan Guth commenta i risultati di BICEP2

E’ ancora vivo il fermento che ha generato in questi giorni l’annuncio dei ricercatori dell’Harvard CMB Group sull’esperimento BICEP2 in merito alla rivelazione di un segnale presente nella radiazione cosmica di fondo associato al passaggio di onde gravitazionali primordiali, una forte evidenza indiretta dell’inflazione cosmica (post). Il modello inflazionistico fu inizialmente proposto negli anni ’80 da Alan Guth, oggi Victor F. Weisskopf Professor of Physics presso il MIT, che commenta qui di seguito il significato scientifico dei dati ottenuti da BICEP2.

Q: Can you explain the theory of cosmic inflation that you first put forth in 1980?

A: I usually describe inflation as a theory of the “bang” of the Big Bang: It describes the propulsion mechanism that drove the universe into the period of tremendous expansion that we call the Big Bang. In its original form, the Big Bang theory never was a theory of the bang. It said nothing about what banged, why it banged, or what happened before it banged. The original Big Bang theory was really a theory of the aftermath of the bang. The universe was already hot and dense, and already expanding at a fantastic rate. The theory described how the universe was cooled by the expansion, and how the expansion was slowed by the attractive force of gravity. Inflation proposes that the expansion of the universe was driven by a repulsive form of gravity. According to Newton, gravity is a purely attractive force, but this changed with Einstein and the discovery of general relativity. General relativity describes gravity as a distortion of spacetime, and allows for the possibility of repulsive gravity. Modern particle theories strongly suggest that at very high energies, there should exist forms of matter that create repulsive gravity. Inflation, in turn, proposes that at least a very small patch of the early universe was filled with this repulsive-gravity material. The initial patch could have been incredibly small, perhaps as small as 10-24 centimeter, about 100 billion times smaller than a single proton. The small patch would then start to exponentially expand under the influence of the repulsive gravity, doubling in size approximately every 10-37 second. To successfully describe our visible universe, the region would need to undergo at least 80 doublings, increasing its size to about 1 centimeter. It could have undergone significantly more doublings, but at least this number is needed. During the period of exponential expansion, any ordinary material would thin out, with the density diminishing to almost nothing. The behavior in this case, however, is very different: The repulsive-gravity material actually maintains a constant density as it expands, no matter how much it expands! While this appears to be a blatant violation of the principle of the conservation of energy, it is actually perfectly consistent. This loophole hinges on a peculiar feature of gravity: The energy of a gravitational field is negative. As the patch expands at constant density, more and more energy, in the form of matter, is created. But at the same time, more and more negative energy appears in the form of the gravitational field that is filling the region. The total energy remains constant, as it must, and therefore remains very small. It is possible that the total energy of the entire universe is exactly zero, with the positive energy of matter completely canceled by the negative energy of gravity. I often say that the universe is the ultimate free lunch, since it actually requires no energy to produce a universe. At some point the inflation ends because the repulsive-gravity material becomes metastable. The repulsive-gravity material decays into ordinary particles, producing a very hot soup of particles that form the starting point of the conventional Big Bang. At this point the repulsive gravity turns off, but the region continues to expand in a coasting pattern for billions of years to come. Thus, inflation is a prequel to the era that cosmologists call the Big Bang, although it of course occurred after the origin of the universe, which is often also called the Big Bang.

Q: What is the new result announced this week, and how does it provide critical support for your theory?

A: The stretching effect caused by the fantastic expansion of inflation tends to smooth things out — which is great for cosmology, because an ordinary explosion would presumably have left the universe very splotchy and irregular. The early universe, as we can see from the afterglow of the cosmic microwave background (CMB) radiation, was incredibly uniform, with a mass density that was constant to about one part in 100,000. The tiny nonuniformities that did exist were then amplified by gravity: In places where the mass density was slightly higher than average, a stronger-than-average gravitational field was created, which pulled in still more matter, creating a yet stronger gravitational field. But to have structure form at all, there needed to be small nonuniformities at the end of inflation. In inflationary models, these nonuniformities — which later produce stars, galaxies, and all the structure of the universe — are attributed to quantum theory. Quantum field theory implies that, on very short distance scales, everything is in a state of constant agitation. If we observed empty space with a hypothetical, and powerful, magnifying glass, we would see the electric and magnetic fields undergoing wild oscillations, with even electrons and positrons popping out of the vacuum and then rapidly disappearing. The effect of inflation, with its fantastic expansion, is to stretch these quantum fluctuations to macroscopic proportions. The temperature nonuniformities in the cosmic microwave background were first measured in 1992 by the COBE satellite, and have since been measured with greater and greater precision by a long and spectacular series of ground-based, balloon-based, and satellite experiments. They have agreed very well with the predictions of inflation. These results, however, have not generally been seen as proof of inflation, in part because it is not clear that inflation is the only possible way that these fluctuations could have been produced. The stretching effect of inflation, however, also acts on the geometry of space itself, which according to general relativity is flexible. Space can be compressed, stretched, or even twisted. The geometry of space also fluctuates on small scales, due to the physics of quantum theory, and inflation also stretches these fluctuations, producing gravity waves in the early universe. The new result, by John Kovac and the BICEP2 collaboration, is a measurement of these gravity waves, at a very high level of confidence. They do not see the gravity waves directly, but instead they have constructed a very detailed map of the polarization of the CMB in a patch of the sky. They have observed a swirling pattern in the polarization (called “B modes”) that can be created only by gravity waves in the early universe, or by the gravitational lensing effect of matter in the late universe. But the primordial gravity waves can be separated, because they tend to be on larger angular scales, so the BICEP2 team has decisively isolated their contribution. This is the first time that even a hint of these primordial gravity waves has been detected, and it is also the first time that any quantum properties of gravity have been directly observed.

Q: How would you describe the significance of these new findings, and your reaction to them?

A: The significance of these new findings is enormous. First of all, they help tremendously in confirming the picture of inflation. As far as we know, there is nothing other than inflation that can produce these gravity waves. Second, it tells us a lot about the details of inflation that we did not already know. In particular, it determines the energy density of the universe at the time of inflation, which is something that previously had a wide range of possibilities. By determining the energy density of the universe at the time of inflation, the new result also tells us a lot about which detailed versions of inflation are still viable, and which are no longer viable. The current result is not by itself conclusive, but it points in the direction of the very simplest inflationary models that can be constructed. Finally, and perhaps most importantly, the new result is not the final story, but is more like the opening of a new window. Now that these B modes have been found, the BICEP2 collaboration and many other groups will continue to study them. They provide a new tool to study the behavior of the early universe, including the process of inflation. When I (and others) started working on the effect of quantum fluctuations in the early 1980s, I never thought that anybody would ever be able to measure these effects. To me it was really just a game, to see if my colleagues and I could agree on what the fluctuations would theoretically look like. So I am just astounded by the progress that astronomers have made in measuring these minute effects, and particularly by the new result of the BICEP2 team. Like all experimental results, we should wait for it to be confirmed by other groups before taking it as truth, but the group seems to have been very careful, and the result is very clean, so I think it is very likely that it will hold up.

Courtesy MIT: 3 Questions: Alan Guth on new insights into the ‘Big Bang’

Using the Universe as ‘tool’ to detect gravitons

La gravità è l’unica tra le quattro forze fondamentali per la quale gli scienziati non hanno ancora rivelato la sua unità fondamentale. Infatti, secondo il modello standard delle particelle elementari si ritiene che l’interazione gravitazionale venga trasmessa attraverso il gravitone, allo stesso modo con cui l’interazione elettromagnetica viene trasmessa dai fotoni. Oggi, nonostante esistano delle basi teoriche a favore dell’esistenza dei gravitoni rimane, però, il problema di rivelarli, almeno sulla Terra dove le possibilità sono estremamente basse se non quasi nulle.

For example, the conventional way of measuring gravitational forces, by bouncing light off a set of mirrors to measure tiny shifts in their separation, would be impossible in the case of gravitons. According to physicist Freeman Dyson, the sensitivity required to detect such a miniscule distance change caused by a graviton requires the mirrors to be so massive and heavy that they’d collapse and form a black hole. Because of this, some have claimed that measuring a single graviton is hopeless. But what if you used the largest entity you know of, in this case the Universe, to search for the telltale effects of gravitons. That is what two physicists are proposing. In the paper, “Using cosmology to establish the quantization of gravity”, published in Physical Review D (Feb. 20, 2014), Lawrence Krauss, a cosmologist at Arizona State University, and Frank Wilczek, a Nobel-prize winning physicist with MIT and ASU, have proposed that measuring minute changes in the cosmic background radiation of the Universe could be a pathway of detecting the telltale effects of gravitons.

Krauss and Wilczek suggest that the existence of gravitons, and the quantum nature of gravity, could be proved through some yet-to-be-detected feature of the early Universe.

This may provide, if Freeman Dyson is correct about the fact that terrestrial detectors cannot detect gravitons, the only direct empirical verification of the existence of gravitons”, Krauss said. “Moreover, what we find most remarkable is that the Universe acts like a detector that is precisely the type that is impossible or impractical to build on Earth”. It is generally believed that in the first fraction of a second after the Big Bang, the Universe underwent rapid and dramatic growth during a period called “inflation.” If gravitons exist, they would be generated as “quantum fluctuations” during inflation. Ultimately, these would evolve, as the Universe expanded, into classically observable gravitational waves, which stretch space-time along one direction while contracting it along the other direction. This would affect how electromagnetic radiation in the cosmic microwave background (CMB) radiation left behind by the Big Bang is produced, causing it to become polarized. Researchers analyzing results from the European Space Agency’s Planck satellite are searching for this “imprint” of inflation in the polarization of the CMB.

Krauss said his and Wilczek’s paper combines what already is known with some new wrinkles.

While the realization that gravitational waves are produced by inflation is not new, and the fact that we can calculate their intensity and that this background might be measured in future polarization measurements of the microwave background is not new, an explicit argument that such a measurement will provide, in principle, an unambiguous and direct confirmation that the gravitational field is quantized is new”, he said. “Indeed, it is perhaps the only empirical verification of this very important assumption that we might get in the foreseeable future”. Using a standard analytical tool called dimensional analysis, Wilczek and Krauss show how the generation of gravitational waves during inflation is proportional to the square of Planck’s constant, a numerical factor that only arises in quantum theory. That means that the gravitational process that results in the production of these waves is an inherently quantum-mechanical phenomenon. This implies that finding the fingerprint of gravitational waves in the polarization of CMB will provide evidence that gravitons exist, and it is just a matter of time (and instrument sensitivity) to finding their imprint. “I’m delighted that dimensional analysis, a simple but profound technique whose virtues I preach to students, supplies clear, clean insight into a subject notorious for its difficulty and obscurity”, said Wilczek. “It is quite possible that the next generation of experiments, in the coming decade or maybe even the Planck satellite, may see this background”, Krauss added.

ASU: Researchers propose a new way to detect the elusive graviton

arXiv: Using Cosmology to Establish the Quantization of Gravity