Archivi tag: mini buchi neri

I mini buchi neri di LHC: portali verso universi paralleli?

L’idea che esistano altri universi è alquanto affascinante, nonostante sia quasi impossibile verificarla sperimentalmente. Oggi, però, un gruppo di teorici ritiene che l’energia raggiunta con le prossime collisioni al Large Hadron Collider (LHC) permetterà di svelare l’esistenza di universi paralleli, se esistono. Continua a leggere I mini buchi neri di LHC: portali verso universi paralleli?
Annunci

LHC, mini buchi neri e dimensioni spaziali extra

Una delle conseguenze del modello detto ‘mondo-brana’, contemplato dalla teoria delle stringhe, è la formazione di  buchi neri microscopici che possono emergere in seguito alle collisioni di alta energia realizzate negli acceleratori di particelle. Le teorie che prevedono questa possibilità affascinante sono quelle in cui la scala di energia in cui avvengono i fenomeni fisici della gravità quantistica è molto inferiore rispetto al valore convenzionale di 1019 GeV (GeV indica 1 miliardo di electronVolt) e può addirittura essere ancora più bassa, cioè dell’ordine di qualche TeV (TeV indica 1000 miliardi di electronVolt).

La teoria della relatività generale può essere formulata in qualsiasi numero di dimensioni spaziotemporali anche se, ad oggi, i dati indicano che viviamo in un Universo caratterizzato da 3 dimensioni spaziali e 1 temporale. Sin dagli anni ’20, sono state formulate altre teorie della gravità, a partire da quella di Kaluza-Klein, che prevedono ulteriori dimensioni spaziali. Oggi, secondo la teoria delle stringhe, si ritiene che queste dimensioni extra ‘invisibili’ siano ‘arrotolate’ o ‘compattificate’ su scale molto piccole, dell’ordine della lunghezza di Planck che è di 10-33 cm, e perciò non possono essere osservate direttamente. Nonostante ciò, sono state elaborate delle teorie che si basano sull’esistenza di dimensioni spaziali molto più grandi se confrontate con la lunghezza di Planck, al fine di risolvere il cosiddetto ‘problema della gerarchia’.

Il punto chiave è capire come mai la scala naturale dell’energia relativa alla gravità quantistica, cioè l’energia di Planck che è di 1019 GeV, sia così grande, circa 17 ordini di grandezza, rispetto alla scala naturale dell’energia relativa alle interazioni fondamentali (ad esempio, la scala di energia della forza elettrodebole è 100 GeV).

Nel modello proposto da N. Arkani-Hamed, S. Dimopoulos e G.R. Dvali, detto scenario ADD, si hanno “n” dimensioni extra compattificate. Ora, un volume decisamente più grande che contiene queste dimensioni maggiorate fa sì che la scala fondamentale di energia della gravità quantistica diventi di molto inferiore rispetto a quella di Planck, diciamo dell’ordine di qualche TeV, e perciò può rientrare nell’ordine di grandezza delle energie prodotte dal Large Hadron Collider (LHC). Anche se la lunghezza scala di queste dimensioni non è stata esplorata dal punto di vista dell’interazione gravitazionale, essa è stata invece studiata nell’ambito degli esperimenti che riguardano la fisica delle particelle. Tuttavia, per evitare che esistano delle contraddizioni con il modello standard delle particelle, lo spaziotempo descritto dallo scenario ADD è composto da una brana quadridimensionale racchiusa da uno spaziotempo le cui dimensioni spaziali sono molto più grandi rispetto alla lunghezza scala di Planck. Tutte le particelle e le forze fondamentali sono confinate nella brana e solo la gravità si può propagare in questa struttura più grande che contiene la stessa brana. Questi modelli, come lo scenario ADD, sono noti anche con il termine ‘brana-universi’.

Una delle conseguenze più spettacolari del modello ADD è la possibilità di esplorare gli effetti della gravità quantistica su scale di energia che possono rientrare negli esperimenti di LHC, ossia la produzione di mini buchi neri durante le collisioni di alta energia. L’idea che sta alla base del processo è molto semplice. Consideriamo due particelle la cui energia prodotta dalla collisione è molto più grande di 1 TeV. In uno spaziotempo quadridimensionale, la cosiddetta “Hoop Conjecture” di Kip Thorne afferma che un mini buco nero si formerà solo se l’energia delle particelle viene compressa in una regione la cui circonferenza è inferiore a 2rH dove “rH” è il raggio di un buco nero di Schwarzschild la cui energia è uguale all’energia totale delle due particelle. In uno spaziotempo che ha più di 4 dimensioni, la “Hoop Conjecture” viene leggermente modificata, ma il principio fondamentale rimane lo stesso: in altre parole, se l’energia delle due particelle che collidono viene compressa in una regione estremamente piccola, allora ci si aspetta la formazione di un mini buco nero. Facendo una serie di calcoli che tengono conto della sezione d’urto delle particelle, si ha che assumendo, ad esempio, una energia di collisione uguale a 1Tev e che il numero delle dimensioni extra sia n=6, si ottiene un mini buco nero ogni secondo che ha una massa di 5TeV/c2. È importante sottolineare che la produzione di mini buchi neri è una possibilità realistica descritta da quei modelli che prevedono dimensioni extra maggiorate, dove cioè la scala fondamentale di energia della gravità quantistica è dell’ordine di 1 – 10 TeV. Le dimensioni di ogni buco nero che andrà a formarsi saranno microscopiche e con un raggio dell’ordine di 10-4 fm (fermi o femtometro; 1fm=10-15m).

Quando si forma in seguito alla collisione delle due particelle, il mini buco nero appare inizialmente molto asimmetrico e poi inizia a ruotare rapidamente, a causa del suo momento angolare. Assumendo che la quantità di energia iniziale del mini buco nero sia alcune volte maggiore della scala di energia della gravità quantistica, si può descrivere la sua geometria in termini della relatività generale, secondo una approssimazione semiclassica. Dunque, l’evoluzione del mini buco nero che si forma in seguito al processo di collisione tra due particelle può essere descritta nei seguenti punti:

  1. balding phase: il mini buco nero perde la sua asimmetria come parte del processo di formazione e inizia a ruotare rapidamente;
  2. spin-down phase: il mini buco nero emette radiazione Hawking, perde massa e momento angolare perciò smette di ruotare;
  3. Schwarzschild phase: il mini buco nero possiede ora una simmetria sferica e continua ad emettere radiazione Hawking;
  4. Planck phase: quando l’energia del mini buco nero diventa compatibile con quella tipica della gravità quantistica, dell’ordine cioè di alcuni TeV, la sua geometria non può essere più descritta dalla relatività generale e tutti gli effetti della gravità quantistica, che sono ignorati nell’approssimazione semiclassica, diventano importanti.

Nonostante i fisici del CERN utilizzino vari processi attraverso i quali viene simulata la formazione di mini buchi neri (CHARYBDIS2 e BlackMax per buchi neri semiclassici e QBH per buchi neri quantistici), ad oggi non esistono evidenze sperimentali in merito alla loro produzione.

L’esperimento ATLAS esclude la formazione di buchi neri semiclassici che hanno masse inferiori a 4TeV/c2 per n=6 ed energie di collisione di 2TeV, mentre CMS esclude la formazione di buchi neri quantistici con masse inferiori a 5-6TeV/c2 ed energie di collisione di 2-5TeV. Insomma, la mancanza di evidenze sperimentali sulla formazione di mini buchi neri permette di porre dei limiti inferiori alla scala di energia della gravità quantistica e, indirettamente, alla elusiva teoria della gravità quantistica.

arXiv: Black holes, TeV-scale gravity and the LHC
arXiv: Phenomenology, Astrophysics and Cosmology of Theories with Sub-Millimeter Dimensions and TeV Scale Quantum Gravity


Articoli correlati

La struttura a forma di ‘schiuma’ dello spaziotempo quantistico

Illustrazione artistica del concetto di “schiuma” quantistica. La bolla in primo piano rappresenta un universo che evolve con le sue leggi fisiche.

Secondo un lavoro recente pubblicato dal fisico Jacob D. Bekenstein, della Hebrew University a Gerusalemme, esisterebbe un modo di misurare la struttura dello spaziotempo quantistico. Anziché utilizzare i grandi acceleratori di particelle, Bekenstein propone un esperimento basato semplicemente su un blocco di vetro, un laser e un rivelatore.

Il termine ‘schiuma quantistica’ (quantum foam), che viene utilizzato per descrivere la natura non continua e regolare dello spaziotempo su scale quantistiche, fu introdotto da John Wheeler nel 1955. Egli aveva notato un fatto importante e cioè che secondo le leggi della meccanica quantistica, alcune proprietà dello spaziotempo possiedono determinati gradi di incertezza. In seguito, i fisici svilupparono questa idea suggerendo il fatto che su scale quantistiche l’Universo è come composto da singole unità costituite da tantissimi buchi neri microscopici che emergono e svaniscono continuamente. Perciò, se vogliamo immaginare per un istante come potrebbe apparire questa situazione, ecco che emerge il quadro di una struttura quantistica dello spaziotempo a forma di ‘schiuma’. Nonostante ciò, fino ad oggi tutti i tentativi di misurare o di provare le varie teorie quantistiche sulla struttura dello spaziotempo non hanno portato a risultati entusiasmanti dato che stiamo considerando scale estremamente piccole dove le particelle esistono e si muovono nel cosiddetto spazio di Planck. Bekenstein propone, dunque, un nuovo approccio e afferma, nel suo articolo, che ciò che si deve fare è sparare semplicemente un singolo fotone attraverso un blocco di vetro e misurarne il suo spostamento. Per fare ciò, occorre utilizzare una dimensione giusta del blocco di vetro e una lunghezza d’onda del fotone in modo tale che se il fotone sposta il centro di massa del blocco di vetro, allora potrebbe trattarsi proprio di una lunghezza di Planck. In altre parole, se l’Universo ha effettivamente una struttura granulare, così come viene ipotizzato teoricamente, il fotone potrebbe interagire con una minuscola unità di questa struttura tale da ostacolare il suo percorso, altrimenti il fotone potrà continuare indisturbato. Ora, dato che la teoria suggerisce che esiste un numero indefinito di buchi neri microscopici in ogni parte dell’Universo, diventa ragionevole assumere che il centro di massa del blocco di vetro possa cadere in uno di essi impedendo così il movimento del blocco. Quindi, per rivelare la presenza di una struttura quantistica schiumosa dello spaziotempo, occorrerà analizzare tutte le traiettorie dei singoli fotoni che passano attraverso il blocco di vetro e vedere come si comportano utilizzando un rivelatore posto sulla parte opposta rispetto alla sorgente da cui vengono emessi i fotoni.

arXiv: Is a tabletop search for Planck scale signals feasible

Higgs o non Higgs, questo è il problema!

L’immagine mostra la simulazione al rivelatore ATLAS relativa al decadimento di un bosone di Higgs che determina la produzione di due raggi-gamma.
Credit: CERN/LHC

Il prossimo 4 luglio il CERN organizzerà a Ginevra un seminario allo scopo di annunciare gli ultimi risultati dei due più importanti esperimenti del Large Hadron Collider (LHC), ATLAS e CMS, in merito alla ricerca del bosone di Higgs. I fisici saranno dunque in attesa di capire che cosa è stato effettivamente osservato [LIVE WEBCAST].

Non sappiamo ancora cosa accadrà mercoledì 4 luglio”, afferma Ian Hinchliffe, un fisico teorico della Divisione di Fisica presso il Dipartimento di Energia del Lawrence Berkeley National Laboratory a capo del gruppo dei fisici americani nell’ambito della partecipazione all’esperimento ATLAS. “Credo che si tratti di un momento molto importante al CERN e, forse, siamo arrivati ad un primo traguardo dopo tanti anni di intenso lavoro”. Lo scorso Dicembre, entrambi i rivelatori riportarono due segnali, con un leggero eccesso rispetto al rumore di fondo, consistenti con quanto ci si aspetta per il bosone di Higgs. Nella primavera di quest’anno, gli esperimenti di LHC sono ripartiti con un livello di energia più alto e i dati sono raddoppiati. Tuttavia, anche se entrambi gli esperimenti dovessero confermare ciò che hanno rivelato lo scorso anno con i nuovi dati, nessuno è certo di affermare che si tratti in definitiva del bosone di Higgs. Ma alcuni scienziati si pongono nuove domande sulle implicazioni che la scoperta o meno del bosone di Higgs possa avere, oltre a spiegare l’origine della massa delle particelle, per risolvere uno dei più grandi enigmi della cosmologia moderna: l’inflazione cosmica. I cosmologi ritengono che la particella o il campo di forze che si cela dietro l’inflazione, l’inflatone, abbia una proprietà alquanto insolita: esso genera un campo gravitazionale repulsivo. Per far sì che lo spazio aumenti il proprio volume in un intervallo di tempo molto piccolo, i teorici ipotizzano che l’energia del campo deve essersi modificata attraverso lo spazio nel corso tempo, cioè da un valore elevato ad un valore più basso quando alla fine del processo l’espansione inflazionistica è terminata. Ora, il punto è che non sappiamo ancora molto sull’inflazione e alcuni critici si domandano se effettivamente sia avvenuta. Per discriminare tra vari scenari, i cosmologi hanno cominciato ad analizzare i dati della radiazione cosmica di fondo che, però, non ci permettono di avere indizi definitivi sulla natura stessa dell’inflazione cosmica. Altri teorici, invece, ritengono che LHC potrebbe essere la chiave di svolta per capire se il periodo della rapida espansione esponenziale dello spazio sia effettivamente avvenuto, anche se alcuni scettici sono convinti che ciò non sarà possibile in quanto le energie in gioco per poter “verificare” l’inflazione sono dell’ordine di 1050 volte superiori a quelle di LHC. Ma dato che l’intensità del campo inflatone si è modificata diminuendo nel corso del tempo, gli scienziati ritengono che LHC abbia comunque quell’energia necessaria per riprodurre i momenti finali dell’epoca inflazionistica. “L’idea che il bosone di Higgs possa guidare l’inflazione è possibile solo se la sua massa cade all’interno di un determinato intervallo di valori che sono osservabili da LHC”, spiega Mikhail Shaposhnikov della École Polytechnique Fédérale di Lausanne in Svizzera. Inoltre, c’è da dire che non solo il campo inflatone ma anche il campo di Higgs si è modificato nel tempo. Ora, l’inventore, per così dire, della teoria inflazionistica, Alan Guth, ha assunto originariamente che l’inflazione fosse guidata da un campo di Higgs che emerge nell’ambito di una teoria di grande unificazione. La parte interessante dei modelli inflazionistici che si basano sul campo di Higgs è che tali modelli potrebbero spiegare l’inflazione proprio nell’ambito del modello standard delle particelle elementari e delle interazioni fondamentali. Tuttavia, quando si prendono in considerazione questi modelli, l’energia del campo di Higgs decresce troppo rapidamente e perciò non è in grado di generare quelle fluttuazioni che sono osservate nella radiazione cosmica di fondo. Dunque, occorre ammettere l’esistenza di altri campi per tener conto di tutti gli effetti dovuti all’inflazione. Ad esempio, un modello inflazionistico di Higgs proposto da Shaposhnikov e Fedor Bezrukov dell’University of Connecticut elimina il problema di introdurre campi di forze extra e suggerische che Higgs interagisce con la gravità in maniera diversa rispetto alle altre particelle. Ciò permetterebbe al campo di Higgs di mantenere la sua energia più a lungo in modo da determinare l’Universo che osserviamo oggi. Anupam Mazumdar della Lancaster University in Inghilterra suggerisce, invece, che altre particelle potenzialmente rivelate da LHC potrebbero fornirci nuovi indizi sull’inflazione. Questi modelli alternativi si basano sulla supersimmetria, la teoria che correla i due tipi fondamentali di particelle, cioè i fermioni e i bosoni. La rivelazione da parte di LHC delle cosiddette “s-particelle” sarebbe un passo importante per la soluzione di un altro grande enigma della cosmologia legato alla materia scura di cui il neutralino, un tipo di s-particella, potrebbe essere un buon candidato. Secondo Mazumdar, se l’inflatone è una s-particella allora l’energia del campo inflatone deve essere terminata con un valore basso di densità di energia potenzialmente rivelabile da LHC; nel caso contrario, l’inflatone può aver generato un rapporto di densità di materia normale su materia scura più basso rispetto a quello che osserviamo oggi nell’Universo. “In definitiva, se LHC rivelerà il bosone di Higgs e nient’altro, per me l’inflazione può essere spiegata in termini del campo di Higgs”, afferma Shaposhnikov. “Se poi LHC rivelerà le particelle supersimmetriche o un nuovo fenomeno fisico, secondo me il modello non sarà poi così attraente. Vedremo cosa accadrà dopo il seminario del 4 luglio!”. Ad ogni modo, Guth crede che molto probabilmente l’energia del campo inflatone vada ben al di là di quelle che sono le capacità di LHC. “Anche se non lo sappiamo, rimane tuttavia molto eccitante il fatto che LHC possa rivelare quei campi di forze che hanno causato l’inflazione” dichiara Guth.

Certo è che qualsiasi notizia arrivi dal CERN il prossimo 4 luglio, gli indizi e le indicazioni finora ottenuti sono proprio all’inizio della ricerca del bosone di Higgs. Si tratta di un lungo viaggio di scoperte verso una fisica ancora inesplorata nell’ambito della supersimmetria, della materia scura, dei mini buchi neri, delle dimensioni extra dello spazio e di altri fenomeni di cui ignoriamo totalmente la loro origine e natura [LIVE WEBCAST].

Per approfondire questo ed altri argomenti: Enigmi Astrofisici – Dal Big Bang al Multiverso