Archivi tag: materia

Holometer, un esperimento per studiare la natura dell’Universo

Se vedete in dettaglio lo schermo del vostro televisore noterete dei pixel, piccoli punti di dati che formano una immagine senza soluzione di continuità se ci allontaniamo. Gli scienziati ritengono che l’informazione contenuta nell’Universo sia contenuta allo stesso modo in una specie di “pixel spaziali” la cui dimensione naturale è 10 trilioni di trilioni di volte più piccola di un atomo, una distanza a cui i fisici si riferiscono in termini di scala di Planck. Continua a leggere Holometer, un esperimento per studiare la natura dell’Universo

ALPHA pone un limite alla carica elettrica dell’anti-idrogeno

Secondo le attuali teorie, subito dopo il Big Bang si crearono esattamente le stesse quantità di materia e di antimateria ma oggi vediamo che l’Universo è interamente composto di materia. La domanda è: dov’è andata a finire l’antimateria? Questa è solo una delle questioni fondamentali che riguardano un problema ancora aperto della fisica moderna e cioè l’asimmetria materia-antimateria di cui se ne parla in un lungo capitolo nel testo Enigmi Astrofisici. Oggi, però, un nuovo studio condotto da alcuni ricercatori del CERN ci permette di fare un passo avanti verso la risoluzione di questo mistero. Grazie ad una serie di esperimenti condotti da ALPHA presso l’Antiproton Decelerator (AD) del CERN, è stato possibile misurare con grande precisione la carica elettrica dell’anti-idrogeno, un risultato che ci fornisce preziosi indizi su quelle minuscole differenze che esistono tra materia e antimateria e, indirettamente, sull’assenza di antimateria nell’Universo.

CERN: CERN’s ALPHA experiment measures charge of antihydrogen

Nature: An experimental limit on the charge of antihydrogen

Un eccesso di antineutrini nell’Universo primordiale

Uno dei misteri della cosmologia moderna è quello che riguarda l’asimmetria barionica e cioè il fatto che l’Universo in cui viviamo è fondamentalmente costituito di materia. La domanda è: dove è andata a finire l’antimateria? I barioni, ossia le particelle che sono composte da una combinazione di tre quark, includono i protoni e i neutroni e rappresentano la materia ordinaria di cui anche noi stessi siamo fatti. Tuttavia, si conosce ancora poco sulla possibile esistenza di una asimmetria leptonica in cui cioè esistono nell’Universo quantità diverse di leptoni e antileptoni. Esempi di leptoni sono gli elettroni e i neutrini. Quest’ultimi, in particolare, sono molto difficili da rivelare rispetto ai barioni poiché sono delle particelle elusive e molto leggere e, di conseguenza, meno energetiche.

Oggi, grazie ad uno studio recente, i fisici Dominik J. Schwarz e Maik Stuke della Bielefeld University in Germania hanno pubblicato un articolo sul New Journal of Physics dove spiegano come i recenti dati relativi alla radiazione cosmica di fondo suggeriscano che l’Universo contenga un eccesso di antineutrini rispetto ai normali neutrini (video abstract). Inoltre, questa asimmetria leptonica potrebbe, in linea di principio, superare l’asimmetria barionica, che è dell’ordine di 10-10, anche di diversi ordini di grandezza. Il numero totale di leptoni potrebbe così superare il numero totale di barioni presenti nell’Universo. Tuttavia, trovare tracce di questa asimmetria leptonica non è un lavoro molto semplice. I leptoni hanno una energia così bassa che la maggior parte di queste particelle possono facilmente ‘celarsi’, per così dire, nel segnale di fondo dovuto ai neutrini e perciò diventa complicato rivelarli. Nonostante ciò, Schwarz e Stuke sono convinti che i leptoni possano essere osservati esplorando le epoche primordiali della storia cosmica poiché essi avrebbero giocato un ruolo importante da un lato nel processo della nucleosintesi, cioè la produzione dei nuclei degli elementi più leggeri che si formarono immediatamente dopo il Big Bang, e dall’altro nella radiazione cosmica di fondo, la radiazione fossile prodotta circa 400 mila anni dopo la nascita dell’Universo. In particolare, i leptoni avrebbero svolto la loro azione durante la formazione dell’elio primordiale. I due ricercatori hanno misurato l’abbondanza di questo elemento utilizzando i nuovi dati della radiazione cosmica di fondo ottenuti con l’Atacama Cosmology Telescope, con il South Pole Telescope e con il satellite WMAP. Confrontando questi risultati con i dati relativi all’abbondanza dell’elio derivata dalle osservazioni locali che si riferiscono alle regioni di cielo extragalattiche, gli scienziati sono stati in grado di porre alcuni limiti all’asimmetria leptonica. I dati suggeriscono che esiste una possibilità che l’Universo sia governato dagli antineutrini, anziché da quelli normali, il che avrebbe delle implicazioni importanti sulla nostra attuale comprensione di ciò che accadde durante le fasi iniziali della storia cosmica. In più, l’eccesso di antineutrini porterebbe, in linea teorica, ad un aumento del tasso di espansione dell’Universo. Comunque, finora i dati non danno una indicazione che lo scenario standard della nucleosintesi primordiale possa essere, in qualche modo, sbagliato. Ora i fisici sperano che nel futuro nuovi dati sulla radiazione cosmica di fondo e misure più accurate delle abbondanze degli elementi primordiali potranno fornirci degli indizi per verificare sperimentalmente l’asimmetria leptonica e confrontarla con quella barionica, anche se al momento non abbiamo alcuna idea da dove quest’ultima provenga (vedasi Enigmi Astrofisici).

Questo post è stato citato da Maik Stuke: Anti-Neutrinos famous all around the World

New Journal of Physics: Does the CMB prefer a leptonic Universe?

arXiv: Does the CMB prefer a leptonic Universe?

Il mistero delle particelle di Majorana

La figura illustra come potrebbero allinearsi le particelle di Majorana sotto l’azione di due campi magnetici opposti (rosso) che interagiscono con un materiale isolante superconduttore (blu).
Credit: Neupert, Onoda, and Furusaki, PRL 105, 206404 (2010)

Da qualche settimana, i titoli apparsi sui media relativamente alla “scoperta” del bosone di Higgs hanno catturato l’immaginario collettivo, in particolare tra i fisici che vogliono comprendere la vera essenza del cosmo. Si tratta, però, di un piccolo tassello che pare abbia aperto una porta verso la soluzione di uno dei tanti enigmi ancora da svelare (vedasi Enigmi Astrofisici). Nonostante ciò, la fisica teorica Lorenza Viola del Dartmouth College sta cercando di risolvere un mistero della fisica fondamentale: la particella di Majorana.

Si tratta di una particella che dovrebbe esistere al confine tra materia e antimateria, una sorta di particella ibrida avente le proprietà comuni sia alle particelle che alle antiparticelle. Ora, a differenza di quanto accade nel momento in cui materia ed antimateria collidono, scomparendo e rilasciando una grande quantità di energia, le particelle di Majorana si comportano diversamente, in altre parole esse rimangono stabili. Queste particelle potrebbero aiutare i fisici a risolvere altri problemi anche in termini della ridefinizione di alcune proprietà dell’Universo. Infatti, alcuni astrofisici hanno suggerito che le particelle di Majorana potrebbero essere le componenti della materia scura che, come è noto, costituisce l’80% circa della materia presente nello spazio. Tuttavia, gli sforzi sperimentali da parte dei ricercatori non hanno portato finora alla rivelazione di alcun tipo di particella di Majorana. I teorici ritengono che tali particelle potrebbero apparire collettivamente come “quasiparticelle” costituite da elettroni ordinari legati ai nuclei atomici in particolari condizioni fisiche. Oggi, Lorenza Viola e il suo gruppo di ricerca stanno tentando di risolvere questo mistero che, quasi per ironia della sorte, sembra ricordare quello della scomparsa del celebre fisico Ettore Majorana quando nel 1938, salpato da Napoli verso Palermo, non fu mai visto. Dare la caccia alle particelle di Majorana è una cosa alquanto complicata dato che particelle e quasiparticelle vivono a livello subatomico nel bizzarro mondo della meccanica quantistica in cui le regole della fisica classica vengono meno. “Se per un momento immaginassimo di essere così microscopicamente piccoli come gli elettroni, forse potremmo capire come funziona il mondo della meccanica quantistica” spiega Viola. Grazie ad una collaborazione con il suo collega Gerardo Ortiz dell’Indiana University, Viola suggerisce che le particelle di Majorana si trovano da qualche parte in una sorta di “locale microscopico”. Gli scienziati hanno proposto un modello teorico che spiega come le quasiparticelle formino una classe di materiali esotici, noti come superconduttori topologici, che hanno una “doppia personalità”: in altre parole, sulla superficie esterna conducono l’elettricità, come i metalli, mentre nella parte più interna si comportano come superconduttori. La ricerca e la verifica sperimentale di queste proprietà topologiche della materia a livello quantistico forniranno una sorta di arena ricca di dati in cui sarà possibile esplorare la fisica delle misteriose particelle di Majorana.

ArXiv: Majorana modes in time-reversal invariant s-wave topological superconductors