Archivi tag: loop quantum gravity

Towards understanding the Big Bang

Le leggi della fisica non sono in grado di descrivere cosa accadde durante il Big Bang. Infatti, sia la teoria dei quanti che la relatività generale non permettono di spiegare lo stato fisico singolare, infinitamente denso e caldo che caratterizzava le fasi iniziali della storia dell’Universo. Forse un giorno, la formulazione di una teoria che permetta di descrivere la gravità su scale quantistiche potrebbe fornirci una risposta (vedasi Idee sull’Universo). Oggi, alcuni scienziati del  Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) a Golm/Potsdam e del Perimeter Institute in Canada hanno fatto una scoperta importante in questo contesto. La loro idea è quella di assumere che lo spazio consista di piccolissime unità chiamate “mattoni fondamentali”. Partendo da questo concetto, gli scienziati arrivano alla formulazione delle equazioni più importanti della cosmologia, e cioè le equazioni di Friedmann, che permettono di descrivere l’Universo. Il risultato è che questo processo mostra, in definitiva, che la meccanica quantistica e la relatività possono essere effettivamente unificate.

For almost a century, the two major theories of physics have coexisted but have been irreconcilable: while Einstein’s General Theory of Relativity describes gravity and thus the world at large, quantum physics describes the world of atoms and elementary particles. Both theories work extremely well within their own boundaries; however, they break down, as currently formulated, in certain extreme regions, at extremely tiny distances, the so-called Planck scale, for example. Space and time thus have no meaning in black holes or, most notably, during the Big Bang. Daniele Oriti from the Albert Einstein Institute uses a fluid to illustrate this situation: “We can describe the behaviour of flowing water with the long-known classical theory of hydrodynamics. But if we advance to smaller and smaller scales and eventually come across individual atoms, it no longer applies. Then we need quantum physics“. Just as a liquid consists of atoms, Oriti imagines space to be made up of tiny cells or “atoms of space”, and a new theory is required to describe them: quantum gravity.

In Einstein’s relativity theory, space is a continuum. Oriti now breaks down this space into tiny elementary cells and applies the principles of quantum physics to them, thus to space itself and to the theory of relativity describing it. This is the unification idea.

A fundamental problem of all approaches to quantum gravity consists in bridging the huge dimensional scales from the space atoms to the dimensions of the Universe. This is where Oriti, his colleague Lorenzo Sindoni and Steffen Gielen, a former postdoc at the AEI who is now a researcher at the Perimeter Institute in Canada, have succeeded. Their approach is based on so-called group field theory. This is closely related to loop quantum gravity, which the AEI has been developing for some time. The task now consisted in describing how the space of the Universe evolves from the elementary cells. Staying with the idea of fluids: How can the hydrodynamics for the flowing water be derived from a theory for the atoms? This extremely demanding mathematical task recently led to a surprising success. “Under special assumptions, space is created from these building blocks, and evolves like an expanding Universe“, explains Oriti. “For the first time, we were thus able to derive the Friedmann equation directly as part of our complete theory of the structure of space“, he adds. This fundamental equation, which describes the expanding Universe, was derived by the Russian mathematician Alexander Friedmann in the 1920s on the basis of the General Theory of Relativity. The scientists have therefore succeeded in bridging the gap from the microworld to the macroworld, and thus from quantum mechanics to the General Theory of Relativity: they show that space emerges as the condensate of these elementary cells and evolves into a Universe which resembles our own. Oriti and his colleagues thus see themselves at the start of a difficult but promising journey. Their current solution is valid only for a homogeneous Universe, but our real world is much more complex. It contains inhomogeneities, such as planets, stars and galaxies. The physicists are currently working on including them in their theory. And they have planned something really big as their ultimate goal.

On the one hand, they want to investigate whether it is possible to describe space even during the Big Bang.

A few years ago, former AEI researcher Martin Bojowald found clues, as part of a simplified version of loop quantum gravity, that time and space can possibly be traced back through the Big Bang. With their theory, Oriti and his colleagues are hoping to confirm or improve this result. If it continues to prove successful, the researchers could perhaps use it to explain also the assumed inflationary expansion of the Universe shortly after the Big Bang as well, and the nature of the mysterious dark energy. This energy field causes the Universe to expand at an ever-increasing rate. Oriti’s colleague Lorenzo Sindoni therefore adds: “We will only be able to really understand the evolution of the Universe when we have a theory of quantum gravity“. The AEI researchers are in good company here: Einstein and his successors, who have been searching for this for almost one hundred years.

Max Planck Institute: Quantum steps towards the Big Bang

arXiv: Cosmology from Group Field Theory Formalism for Quantum Gravity
Pubblicità

20th International Conference on General Relativity and Gravitation (GR20) and the 10th Amaldi Conference on Gravitational Waves (Amaldi10)

The 20th  International Conference on General Relativity and Gravitation (GR20)  and the 10th Amaldi Conference on Gravitational Waves (Amaldi10) will  take place from 7th – 13th July 2013 at Uniwersytet Warszawski, Warsaw, Poland. GR20  is the latest in the series of triennial international conferences held under the auspices of the International Society on General Relativity and Gravitation. This conference series constitutes the principal international meetings for scientists working in all the areas of relativity and gravitation. The Amaldi conferences are held under the auspices of the Gravitational Wave International Committee. Since 1997, they have been held every two years and are regarded as the most important international conferences for the gravitational wave detection community. This time, in Warsaw,   GR20  and Amaldi10 are organized as a joint event.

The program of the conference, among many topics,  includes:  Planck Results,  Dark Energy,  Formation of the Trapped Surfaces, Dynamics of Asymptotically AdS spacetimes,  Gravity and Condensed Matter Correspondence,  Numerical Relativity and Its Applications to Astrophysics and High Energy Physics, Neutron Stars, Formation of Supermassive Black Holes, Modified Gravity as Alternatives to Dark Energy or Dark Matter,  Cold Atoms for Equivalence Principle Tests and GW Detection, Quantum Fields in Curved Space-time, Higher-Dimensional Spacetimes, Loop Quantum Gravity, Strings and Branes.  

Buchi neri, ‘portali’ verso altri universi

Due scienziati, Rodolfo Gambini dell’University of the Republic in Montevideo, Uruguay, e Jorge Pullin della Louisiana State University, hanno applicato la teoria della Loop Quantum Gravity (LQG) al caso di un buco nero di Schwarzschild. Nel loro articolo pubblicato su Physical Review Letters, i due scienziati non trovano una singolarità nel suo centro bensì una sorta di ‘portale’ verso un altro universo.

Il concetto di Big Bang, come l’evento iniziale da cui ha avuto origine il nostro Universo sta ormai passando di moda, anche perché la teoria della relatività generale non è in grado di descrivere ‘ciò che accadde prima della singolarità’ in un punto del tempo appena prima del Big Bang. La teoria suggerisce inoltre che una tale singolarità dovrebbe esistere al centro dei buchi neri ma, di nuovo, la relatività generale viene meno nel descriverla. Ancora peggio, esiste il problema che riguarda il cosiddetto paradosso dell’informazione: in altre parole, cosa succede all’informazione contenuta in un oggetto che cade in un buco nero verso la singolarità? Ad oggi, i cosmologi ‘classici’ non sanno dare una risposta. Dunque, per tentare di risolvere questi problemi, nel 2006 Abhay Ashtekar ed il suo gruppo presso la Pennsylvania State University, formularono una teoria nota come Loop Quantum Gravity (LQG). Essi suggerirono che invece di ammettere l’esistenza di una singolarità poco prima del Big Bang, ci fossero i ‘frammenti’, per così dire, di un universo collassato che esisteva prima del nostro. In altre parole, il nostro Universo non emerse dal nullo con un Big Bang di se stesso, piuttosto esiste un ciclo infinito dove un universo collassa verso un punto molto piccolo per poi esplodere in un Big Bang che, a sua volta, collassa per poi esplodere secondo un processo ciclico, o a “loop” appunto, che va avanti per sempre. Da quel momento, ci si riferisce alla teoria LQG anche con il termine di Big Bounce in sostituzione del termine Big Bang. Nel loro studio, Gambini e Pullin hanno applicato la LQG al caso più semplice di buco nero. Il loro esperimento dimostra che qualsiasi oggetto che viene attirato verso il buco nero non viene compresso fino a raggiungere la singolarità, piuttosto l’oggetto viene ridotto ad una dimensione piccola ma finita per poi essere espulso interamente in un’altra parte dell’Universo o addirittura in un altro universo. Dato che il loro modello funziona molto bene, i due scienziati ritengono che possa funzionare con gli oggetti reali. Se questa teoria si dimostrerà corretta, essa potrebbe un giorno eliminare il paradosso della perdita dell’informazione aprendo così una nuova strada teorica nel considerare i buchi neri come dei veri e propri ‘portali’ verso altri universi.

arXiv: Loop quantization of the Schwarzschild black hole

eBook: Enigmi Astrofisici

L’origine dell’Universo secondo la gravità quantistica a loop

Image credit: Thomas Fuchs

Secondo il modello cosmologico standard, l’Universo ebbe origine da una grande esplosione iniziale, il Big Bang, circa 13-14 miliardi di anni fa. Alcuni istanti dopo, l’Universo subì una rapida espansione, nota come inflazione, che diede forma, per così dire, allo spazio cosmico. Durante questo periodo, emersero minuscole fluttuazioni di energia che, successivamente, diedero luogo a tutte quelle strutture cosmiche che oggi possiamo ammirare sottoforma di galassie e ammassi di galassie. Nonostante questo modello sia in grado di descrivere in prima approssimazione l’evoluzione dell’Universo primordiale, nessuno è in grado di spiegare come hanno avuto origine queste fluttuazioni primordiali. Ma di recente, tre fisici avrebbero scoperto la chiave per risolvere questo enigma attraverso la formulazione di una teoria in cui la gravità dovrebbe mostrare lo stesso comportamento bizzarro basato sull’incertezza che regna nel mondo delle particelle subatomiche.

La cosmologia standard, che si basa sulla relatività generale, non è in grado di spiegare l’origine delle fluttuazioni dato che viene meno quando consideriamo scale molto piccole, tipiche del mondo degli atomi. Durante il brevissimo ed infinitesimale intervallo di tempo prima che avesse luogo l’inflazione, noto come era di Planck, l’intero Universo era compresso in una regione di spazio molti ordini di grandezza più piccola di quella che occupa un atomo. Se tentiamo di applicare la relatività a questa situazione, le sue previsioni non hanno più senso fisico dato che portano a valori infiniti della densità di energia. Dunque, per estendere i concetti di Einstein a queste situazioni estreme i ricercatori hanno sviluppato una teoria denominata loop quantum gravity. Sin dagli anni ’80, Abhay Ashtekar, attualmente alla Pennsylvania State University, trasformò in qualche modo le equazioni di Einstein per renderle compatibili nell’ambito della fisica quantistica. Ma ci fu un prezzo da pagare. Infatti, come conseguenza di questa manipolazione matematica si trovò che lo spazio non era più liscio, continuo e regolare, come nel caso del mondo infinitamente grande, ma consisteva di tante unità discrete, denominate loop o anelli, e che la sua struttura microscopica poteva fluttuare contemporaneamente tra tutta una serie di stati multipli. Nel corso degli ultimi anni, i fisici hanno dichiarato che se, e con un grande “se” dato che non abbiamo ancora evidenze sperimentali, la teoria della gravità quantistica a loop si dimostrerà corretta allora il Big Bang dovrebbe essere stato originato da un vero e proprio Big Bounce associato ad un precedente universo che si trovava nella fase di collasso gravitazionale. Oggi, però, Ashtekar e i suoi collaboratori sono convinti che questa tecnica, attraverso la quale è possibile estendere i concetti della relatività generale verso gli istanti primordiali della storia dell’Universo, possa riempire il divario tra il Big Bounce, cioè l’era di Planck, e il momento in cui ha origine l’inflazione non solo ma grazie ad essa è possibile spiegare anche la formazione di tutte quelle fluttuazioni senza le quali non si sarebbero formate nel corso del tempo le strutture cosmiche fino ad arrivare persino a noi stessi. Queste fluttuazioni primordiali sarebbero perciò la naturale conseguenza delle fluttuazioni quantistiche che esistevano già all’epoca del Big Bounce. “I nostri risultati forniscono una estensione autoconsistente dell’inflazione fino alla scala di Planck” dichiara Ashtekar. “Il fatto che la gravità quantistica abbia lasciato oggi una sorta di ‘impronta digitale’ sulle strutture cosmiche è alquanto sorprendente ed elegante” dichiara Jorge Pullin della Louisiana State University, un esperto di gravità quantistica a loop e buchi neri. Neil Turok, direttore del Perimeter Institute for Theoretical Physics in Ontario, afferma invece che i ricercatori hanno bisogno di introdurre tutta una serie di “assunzioni artificiose” per poter procedere indietro nel tempo dal momento in cui avviene l’inflazione fino a epoche più remote. “La gravità quantistica a loop è interessante”, dice Turok, “ma non si tratta ancora di una vera e propria teoria e perciò bisogna stare attenti a non prendere sul serio certe sue predizioni”. 

Full story: The missing epoch

Un nuovo paradigma sull’Universo delle origini

Alcuni ricercatori della Penn State University hanno sviluppato un modello che tenta di spiegare le fasi iniziali della storia dell’Universo. Grazie a tecniche moderne che si basano sul cosiddetto modello cosmologico della teoria quantistica a loop (loop-quantum cosmology), gli scienziati hanno esteso i concetti della fisica quantistica fin quasi “all’inizio del tempo”. Questo paradigma della teoria quantistica a loop suggerisce, per la prima volta, che le strutture su larga scala che vediamo oggi come galassie o ammassi di galassie si sono originate a partire dalle fluttuazioni quantistiche iniziali emerse nello spaziotempo ed esistite sin già da quando si originò l’Universo quasi 14 miliardi di anni fa. Questi risultati forniscono nuove opportunità osservative che serviranno per verificare i vari modelli cosmologici grazie alle future missioni spaziali che vedranno impiegati i telescopi di ultima generazione.

“Noi umani da sempre cerchiamo di comprendere come si è originato il nostro Universo”,  spiega Abhay Ashtekar. “Stiamo usando il nostro paradigma per capire, in dettaglio, i processi dinamici che la materia e lo spazio subirono durante le fasi primordiali della storia cosmica, fino all’inizio di tutto”. Il paradigma quantistico fornisce un nuovo sistema concettuale e matematico al fine di descrivere la geometria esotica da cui emerse lo spaziotempo e che possiamo descrivere applicando le leggi della meccanica quantistica. Questo modello suggerisce che l’Universo era così compresso fino a raggiungere valori di densità tali che il suo comportamento non può essere descritto né dalle equazioni della relatività generale di Einstein né da una teoria ancora più fondamentale che si basa sulle strani leggi della meccanica quantistica. Si calcola che la densità della materia poteva raggiungere valori dell’ordine di 1094 grammi per centimetro cubico contro la densità di un nucleo atomico che è di 1014 grammi. Nel mondo bizzarro della meccanica quantistica, dove si parla di probabilità piuttosto che di certezza, le proprietà fisiche sono decisamente diverse da quelle del mondo a cui siamo abituati. Tra queste differenze esistono i concetti di tempo così come le proprietà dinamiche di vari sistemi che evolvono nel corso del tempo man mano che interagiscono con la struttura dello spaziotempo quantistico. Oggi, l’informazione più antica che disponiamo della storia cosmica ci viene fornita dalla radiazione cosmica di fondo e risale a quando l’Universo aveva una età di appena 380 mila anni. Da quell’epoca, dopo un periodo di rapida espansione, chiamata inflazione, l’Universo è divenuto molto più fluido rispetto alla sua versione iniziale super compressa. All’inizio della fase inflazionistica, la densità dell’Universo era un trilione di volte inferiore rispetto a quella del periodo delle origini, così che le fluttuazioni quantistiche sono molto meno importanti oggi nel determinare le proprietà dinamiche della materia e della geometria dello spaziotempo su larga scala. Le osservazioni della radiazione cosmica di fondo mostrano che l’Universo è uniforme su larga scala, eccetto per alcune regioni dello spazio che sono più o meno dense. Il modello standard inflazionistico, che si basa sulle equazioni classiche della relatività generale, tratta lo spaziotempo come un continuo regolare. “Il modello inflazionario spiega con successo la radiazione cosmica di fondo, ma questo modello non è completo. Esso si basa sull’idea che l’Universo emerse dal nulla in seguito ad una singolarità iniziale, il Big Bang, che risulta dall’incapacità della relatività generale nel descrivere le condizioni estreme della meccanica quantistica”, spiega Ivan Agullo. “Abbiamo bisogno di una teoria quantistica della gravità, come ad esempio la teoria quantistica a loop, per andare oltre la fisica di Einstein, al fine di catturare la vera essenza dell’origine del nostro Universo”. Alcuni lavori precedenti sulla cosmologia quantistica a loop eseguiti dal gruppo di Ashtekar hanno modificato, per così dire, il concetto del Big Bang con l’idea del Big Bounce in base alla quale l’Universo non emerse dal nulla bensì da materia super compressa che sarebbe già esistita ancora prima. Dunque, anche se le condizioni della meccanica quantistica all’inizio del tempo furono estremamente differenti da quelle descritte dalla fisica classica dopo l’inflazione, il nuovo paradigma introdotto dai fisici della Penn State University permette di rivelare una connessione sorprendente tra i due modelli che tentano di descrivere queste fasi primordiali. Nel momento in cui gli scienziati utilizzano il modello dell’inflazione applicando le equazioni di Einstein per descrivere l’evoluzione dell’Universo, essi trovano che le irregolarità diventano quei “siti cosmici” da cui sono emersi gli ammassi di galassie e le strutture su larga scala che osserviamo oggi. Ma in maniera quasi spettacolare si trova che utilizzando il modello cosmologico quantistico a loop, con le sue relative equazioni, le fluttuazioni fondamentali nel momento del Big Bounce evolvono per divenire, nel corso del tempo, ancora quei siti cosmici che si osservano nella radiazione cosmica di fondo. Insomma, i dati dei ricercatori della Penn State suggeriscono che le condizioni iniziali relative alle fasi primordiali dell’Universo portano in maniera naturale alla nascita delle strutture su larga scala che osserviamo oggi. In questo modo, i ricercatori possono descrivere l’origine delle strutture cosmiche del nostro Universo dall’epoca inflazionaria al Big Bounce, coprendo circa 11 ordini di grandezza in termini di densità di materia e della curvatura dello spaziotempo. In altre parole, si definiscono meglio quelle condizioni iniziali che sarebbero esistite durante l’origine dell’Universo che hanno portato successivamente alla formazione delle strutture cosmologiche in accordo con i dati sulla radiazione cosmica di fondo.

[Press release: The Beginning of Everything: A New Paradigm Shift for the Infant Universe]

arXiv 1: An Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era

arXiv 2: A Quantum Gravity Extension of the Inflationary Scenario

arXiv 3: Perturbations in loop quantum cosmology

arXiv 4: Probability of Inflation in Loop Quantum Cosmology

arXiv 5: The Big Bang and the Quantum

Come è nato l’Universo?

E’ una delle grandi domande a cui gli scienziati stanno cercando di dare una risposta. Attualmente, il modello cosmologico standard rappresenta il quadro migliore per descrive, con buona approssimazione, le fasi evolutive della storia cosmica. Secondo questo modello possiamo rappresentare la nascita e l’evoluzione dell’Universo in tre atti: 1) una singolarità iniziale che fa emergere l’Universo dal nulla; 2) l’inflazione cosmica che dà forma all’Universo e 3) l’espansione cosmica durante la quale si formano le stelle e le galassie man mano l’Universo si raffredda. Tuttavia, il modello cosmologico standard non è completo in quanto le leggi della fisica vengono meno in prossimità dell’istante iniziale, cioè nel momento del Big Bang: qui, le equazioni della relatività generale divergono e danno valori infiniti della densità e della temperatura. Già, ma allora che cos’è il Big Bang? Nessuno lo sa e il termine stesso contiene una contraddizione poiché non è stato “big”, dato che l’Universo sarebbe emerso da una singolarità, e non c’è stato un “bang”, dato che non c’era un mezzo su cui si sarebbero propagate onde sonore. In realtà, il Big Bang non indica una esplosione “nello” spazio ma “dello” spazio stesso poiché da questo enigmatico evento iniziale si sarebbero originati, oltre lo spazio, anche il tempo, la materia e l’energia (vedasi Idee sull’Universo).

Questa spiegazione sulla nascita dell’Universo non lascia, però, tutti soddisfatti e, se ci ragionate un attimo, diventa difficile accettare una situazione fisica che generi l’Universo dal nulla (vedasi questo post). La domanda successiva potrebbe essere: “che cosa” avrebbe dato il via? Ad oggi nessuno sa rispondere a questa domanda e allora alcuni scienziati stanno provando a cambiare il punto di vista proponendo altri scenari cosmologici in cui viene eliminato il problema della singolarità. I due modelli alternativi, descritti qui di seguito, si basano rispettivamente su argomentazioni che derivano dalla meccanica quantistica e dalla teoria delle stringhe.

Universo pulsante

Nel suo libro edito da Alfred A. Knopf Once before Time: A whole story of the Universe, Martin Bojowald, professore di fisica presso la Penn State University affronta uno dei problemi della fisica di frontiera è cioè quello di risolvere, appunto, la singolarità del Big Bang, un momento significativo della storia dell’Universo dove, però, le leggi della fisica come noi le conosciamo non sono più valide. Ma a questo problema se ne aggiunge un altro dato che il tentativo di unificare la teoria quantistica con la relatività generale porta agli infiniti. Secondo Bojowald, la teoria della gravità quantistica potrebbe eliminare questi problemi e, forse, spiegare qual’era lo stato fisico dell’Universo ancora prima del Big Bang. Per fare un esempio, possiamo paragonare la teoria quantistica della gravità ad un quadro la cui cornice può sembrare definita per alcuni mentre per altri il disegno in essa contenuto deve essere ancora completato. Una estensione della teoria quantistica della gravità è la cosiddetta Loop Quantum Gravity (LQG), elaborata per la prima volta nel 1990 da Carlo Rovelli e Lee Smolin, per spiegare il moto degli atomi in uno spaziotempo quantizzato. Secondo questa teoria, il tempo non si ferma esattamente nel Big Bang ma ci può essere una sorta di “preistoria del tempo”. In altre parole, con la LQG si introduce il concetto di tempo discreto e la teoria prevede l’esistenza di nuove forze di natura repulsiva che contrastano il collasso gravitazionale classico. Insomma, il tempo ha la forma di un reticolo che può assorbire una determinata quantità di energia, ma non di valore infinito, in modo da bloccare il collasso gravitazionale e trasformarlo successivamente in espansione. In questo modo, l’Universo si espande e si contrae ciclicamente senza mai arrivare ad una singolarità.

Universo ciclico

L’altro affascinante modello cosmologico di cui Vi voglio parlare si basa su concetti più esotici che nascono dalla teoria delle stringhe. Nel loro libro Universo senza fine. Oltre il Big Bang, edito da Il Saggiatore , Paul J. Steinhardt  e Neil Turok partono dal fatto che non esiste una teoria o un modello che spieghi “che cosa” abbia causato il Big Bang, anche se le recenti formulazioni matematiche della cosmologia di stringa descrivono la singolarità iniziale come un momento di transizione nella storia dell’Universo. In maniera brillante ed eloquente, Steinhardt e Turok criticano il modello cosmologico standard e presentano una descrizione alternativa assumendo che il Big Bang sia solo un momento di transizione nell’infinita serie di collisioni tra due membrane, o brane, su una delle quali risiede il nostro Universo e sull’altra un universo parallelo. Tutto questo dà luogo ad una sorta di “universo ciclico”. Bisogna dire che i due modelli hanno molto in comune perchè entrambi concordano sul fatto che l’Universo si sia espanso negli ultimi 14 miliardi di anni e anche su come si sono formate le stelle e le galassie. Tuttavia i due modelli vanno in contrasto su ciò che riguarda lo stato fisico dell’Universo prima del Big Bang. Di fatto, il modello cosmologico standard ammette la singolarità come punto di partenza da dove hanno avuto origine lo spazio, il tempo la materia e l’energia. Il modello ciclico ammette ancora il Big Bang che, però, non rappresenta l’inizio dello spazio e del tempo. Secondo Steinhardt e Turok, non c’è stato solamente un “bang” nella storia dell’Universo, ma tanti “big bang” che si ripetono ciclicamente con un tempo scala di 1000 miliardi di anni, ciascuno dei quali è caratterizzato dalla creazione di materia ed energia e dalla successiva formazione di nuove stelle, galassie, pianeti e, forse, della vita stessa. Dunque il nostro Universo sarebbe quello prodotto dall’ultimo ciclo di una collisione avvenuta tra due membrane.

Come facciamo, quindi, a discriminare tra questi scenari cosmologici? Quale modello è quello più vicino alla realtà? In generale, cosa può fare un modello? Ogni teoria sullo spaziotempo deve essere coerente con ciò che siamo in grado di osservare nell’Universo. Di fatto, nessuna osservazione diretta del Big Bang sarà possibile. L’epoca più antica che possiamo osservare risale a circa 400 mila anni dopo la nascita dell’Universo e ci è stata fornita dal satellite WMAP. Prima di questa epoca, l’Universo era troppo caldo e opaco a causa della radiazione emessa, sarebbe un pò come cercare di vedere sotto la superficie del Sole. Uno dei risultati più importanti è che i dati di WMAP sulla radiazione cosmica di fondo indicano che la geometria dell’Universo è piatta su larga scala e ciò supporta il modello di Guth sull’inflazione. Ma la “prova finale” potrebbe arrivare dallo studio di un’altra forma di radiazione fossile, ad esempio dovuta all’emissione e alla propagazione di onde gravitazionali. Se i dati del satellite Planck, che ha un potere esplorativo più elevato rispetto al suo predecessore, riveleranno ‘tracce’ del passaggio di onde gravitazionali, che è uno degli obiettivi scientifici della missione, allora questo rappresenterà un punto a favore della teoria dell’inflazione, già perché il modello degli universi-membrana prevede una debole, se non quasi assente, produzione di onde gravitazionali. Dunque, non ci resta che aspettare i risultati di Planck che dovrebbero essere resi pubblici entro la fine di quest’anno.

Cosa accadde prima del Big Bang?

Illustrazione del modello del Big Bounce.
Credit: Scientific American

Nonostante il Big Bang rimanga il più profondo degli enigmi della moderna cosmologia, gli scienziati vogliono spingersi oltre al punto da sviluppare un approccio matematico che potrebbe essere in grado di spiegare ciò che accadde prima del Big Bang.

Secondo la teoria generale della relatività, lo spazio è continuo e può essere suddiviso all’infinito in tante regioni sempre più piccole. L’idea che sta alla base della meccanica quantistica è che determinate quantità fisiche esistono sottoforma di pacchetti discreti (quanti) piuttosto che in un continuo. Inoltre, questi quanti e i fenomeni fisici ad essi associati possono esistere solo su una scala estremamente piccola, la scala di Planck. Finora, la meccanica quantistica non è stata in grado di proporre un modello della ‘gravità quantizzata’. La teoria detta loop quantum gravity (LQG) è, di fatto, un tentativo di formulare la descrizione della gravità su scale quantistiche. Essa rappresenta lo spazio come una sorta di rete composta da tanti campi gravitazionali eccitati a forma di inviluppi che si intersecano. Questo insieme viene chiamato spin network e la sua evoluzione nel tempo viene chiamata spin foam. La teoria LQG non solo fornisce un quadro matematico ben preciso dello spazio e del tempo ma ci permette di avere soluzioni matematiche ad una serie di problemi legati ai buchi neri e alla singolarità del Big Bang. Sorprendentemente, la LQG ci dice che il Big Bang è stato in realtà un Big Bounce, cioè non una singolarità ma un continuo dove il collasso gravitazionale di un universo precedente causò la comparsa del nostro Universo. Di recente, un gruppo di ricercatori europei ha dato il via ad un progetto noto come Effective Field Theory For Loop Quantum Gravity (EFTFORLQG) per sviluppare una teoria che possa, in qualche modo, riconciliare i concetti classici della relatività generale con quelli della meccanica quantistica. I risultati ottenuti finora sono andati ben oltre le aspettative al punto che la LQG si presenta oggi come uno dei modelli più competitivi per descrivere la struttura quantistica dello spazio e del tempo compatibile con i concetti della relatività generale. Le implicazioni sono estremamente importanti perchè permettono potenzialmente di risolvere tutta una serie di enigmi del nostro Universo.

Maggiori approfondimenti: Enigmi Astrofisici – Dal Big Bang al Multiverso