Archivi tag: inflazione eterna

Viviamo davvero in un multiverso?

Una decina di anni fa, siamo arrivati ad un punto di svolta epocale per quanto riguarda la nostra comprensione del cosmo, grazie al fatto che gli astronomi hanno potuto far luce su tutta una serie di argomentazioni che hanno permesso di svelare, almeno in parte, come il nostro Universo sia evoluto da uno stato fisico primordiale estremamente denso e caldo, circa 13,8 miliardi di anni fa. Continua a leggere Viviamo davvero in un multiverso?

Annunci

I sette ‘punti chiave’ del nostro Universo

Sin da quando si è originato circa 13,7 miliardi di anni fa, l’Universo continua ad affascinare e a rendere perplessi, allo stesso tempo, gli astronomi. Qui di seguito, vengono discussi alcuni punti sorprendenti e interessanti che caratterizzano il nostro Universo.


Credit: NASA / WMAP Science Team

Secondo le attuali osservazioni e misure effettuate con tecniche alquanto sofisticate, l’Universo emerse da una grande esplosione iniziale, il Big Bang, e ha una età di 13,7 miliardi di anni, con una incertezza di più o meno 130 milioni di anni. Gli astronomi hanno ricavato questo dato misurando la composizione della densità della materia e dell’energia che hanno permesso di determinare quanto rapidamente l’Universo si è espanso nel passato. In questo modo, gli scienziati sono risaliti all’epoca iniziale e hanno potuto calcolare il momento in cui è avvenuto il Big Bang. Il tempo trascorso tra l’esplosione iniziale fino ad oggi rappresenta l’età dell’Universo.


2.L’Universo sta diventando sempre più grande

Verso la fine degli anni ’20, Edwin Hubble fece una scoperta rivoluzionaria: egli trovò che lo spazio non è statico, ma si espande. Nonostante ciò, si pensava che con il passare del tempo la gravità dovuta alla materia presente nell’Universo avesse arrestato l’espansione al punto da causare una contrazione. Ma nel 1998, il telescopio spaziale Hubble permise di ottenere i primi dati sulle supernovae distanti trovando che, molto tempo fa, il tasso di espansione dell’Universo era molto più lento rispetto a quello di oggi. Questa sorprendente scoperta suggerì che doveva esistere una enigmatica forza, chiamata poi energia scura, che sta determinando una accelerazione al tasso di espansione dell’Universo. Mentre si ritiene che l’energia scura sia la causa che sta facendo allontanare le galassie le une dalle altre creando sempre più spazi vuoti, essa rimane comunque il mistero più profondo della cosmologia moderna.


3.L’espansione dell’Universo sta accelerando

Nel 1998, due gruppi di ricercatori annunciarono che non solo l’Universo è in espansione ma che sta accelerando e la causa principale è dovuta ad una enigmatica energia (scura) che permea tutto lo spazio allontanando sempre più le galassie le une dalle altre. L’espansione dell’Universo è in accordo con le equazioni della relatività generale di Einstein e, di recente, gli scienziati hanno ripreso il famoso concetto della costante cosmologica per spiegare questa strana forma di energia che sembra controbilanciare la gravità e causare l’espansione dello spazio ad un ritmo accelerato. Adam Riess, Brian Schmidt e Saul Perlmutter hanno vinto nel 2011 il Premio Nobel per la Fisica per avere scoperto indipendentemente, nel 1998, l’espansione accelerata dell’Universo.


4.La geometria dello spazio potrebbe essere euclidea

Credit: NASA / WMAP Science Team

La forma dell’Universo è influenzata dalla ‘battaglia cosmica’ tra la gravità, dovuta alla densità della materia, e il tasso di espansione dello spazio. Se la densità dell’Universo supera un certo valore critico, allora si dice che l’Universo è “chiuso”, come la superficie di una sfera. Ciò implica che l’Universo non è infinito e che non ha una fine. In questo caso, l’Universo arresterà alla fine la sua espansione ed inizierà a collassare su se stesso in un evento noto come Big Crunch. Se la densità dell’Universo è meno di quella critica, allora la forma geometrica dello spazio si dice “aperta”, come la superficie di una sella. In questo caso, l’Universo non ha confini o bordi e continuerà ad espandersi per sempre. Se poi la densità dell’Universo è esattamente pari a quella critica, allora la forma dello spazio sarà “piatta”, come la superficie di un foglio. In questa situazione, l’Universo non ha bordi o confini e si espanderà per sempre anche se il tasso di espansione si avvicinerà gradualmente allo zero dopo un quantità infinita di tempo. Misure recenti, eseguite dal satellite WMAP, suggeriscono che la geometria dello spazio è euclidea, cioè lo spazio è piatto, con un margine d’errore pari al 2 percento.


5.L’Universo è permeato da una sostanza invisibile

L’Universo è fatto di qualcosa che non vediamo. Di fatto, i pianeti, le stelle, le galassie costituiscono appena il 4 percento di ciò di cui è fatto l’Universo. L’altro 96 percento è rappresentato da qualcosa che gli astronomi non sono in grado ancora di comprendere e a cui essi hanno dato i termini di materia scura ed energia scura, i due misteri più profondi della moderna cosmologia. Nel caso della materia scura, la sua esistenza si basa sull’influenza gravitazionale che essa esercita sulla materia ordinaria.


6.L’Universo contiene l’eco della sua nascita

Simulazione della radiazione cosmica di fondo misurata dal satellite Planck.
Credit: ESA/Planck

La radiazione cosmica di fondo è fatta di echi di luce che sono emersi dall’esplosione iniziale che ha dato origine all’Universo, in seguito al Big Bang, circa 13,7 miliardi di anni fa. Oggi, essa permea l’intero spazio come una sorta di ‘velo di radiazione’. Attualmente, la missione del satellite Planck sta mappando il cielo nella banda delle microonde al fine di rivelare nuovi indizi su come si è originato l’Universo. Le osservazioni effettuate da Planck sono le più precise mai realizzate e perciò gli scienziati sperano di utilizzare i suoi dati in modo da definire alcuni punti ancora oscuri della cosmologia, come ad esempio capire meglio ciò che accadde immediatamente dopo il Big Bang all’Universo delle origini.


7.L’ipotesi degli universi multipli

Le ‘tracce’ lasciate dalle collisioni che sarebbero avvenute tra ‘bolle cosmiche’. Nell’immagine (in alto a sinistra) una collisione provoca una modulazione di temperatura nella radiazione cosmica di fondo (in alto a destra). La risposta alla collisione dovuta al “blob” è identificata in basso a sinistra le cui modulazioni nella radiazione cosmica di fondo sono simulate dall’algoritmo di calcolo nell’immagine in basso a destra.
Credit: S. M. Feeney

L’idea che viviamo in un multiverso, di cui il nostro Universo è uno dei tanti, proviene da una teoria chiamata “inflazione eterna”. Questa teoria suggerisce che subito dopo il Big Bang, lo spaziotempo si espanse in modi e in regioni diverse. Secondo la teoria, ciò diede luogo alla formazione di una serie di “universi-bolla” ognuno dei quali caratterizzati da proprie leggi fisiche (post). Tuttavia, questo concetto è ancora controverso ed è rimasto solamente teorico fino alla pubblicazione di studi recenti che tentano di fornire dei metodi per rivelare la presenza di eventuali universi vicini o paralleli. Infatti, alcuni scienziati hanno tentato di analizzare in maniera approfondita e dettagliata la radiazione cosmica di fondo alla ricerca di quelle “tracce” o “segni” che possano essere ricondotti ad ipotetiche collisioni tra due universi paralleli (post). Finora, però, non state trovate chiare evidenze che possano essere associate a tali eventi. In linea di principio, se due universi vicini venissero ad una collisione essi dovrebbero lasciare una serie di ‘tracce circolari’ rivelabili nella radiazione cosmica di fondo.


Per maggiori approfondimenti: Idee sull'Universo e Enigmi Astrofisici

Il nostro Universo potrebbe far parte di un multiverso più grande

E’ stato detto più volte che il nostro Universo potrebbe essere non l’unico ad esistere là fuori ma essere uno dei tanti infiniti universi che compongono quello che viene chiamato il “multiverso”. Nonostante questo concetto possa determinare una certa incredulità, esistono delle motivazioni fisiche che giustificano, per così dire, questa affermazione. Inoltre, dobbiamo dire che non esiste un solo modo per arrivare a questa conclusione perchè altre teorie puntano tutte, e in maniera indipendente, al concetto di multiverso. Molti teorici credono, di fatto, che l’esistenza di altri “universi nascosti” o non visibili è molto più probabile di quanto venga ipotizzato diversamente. Ecco qui di seguito le cinque teorie scientifiche più plausibili che suggeriscono l’esistenza del multiverso.


 Infiniti universi

Illustrazione artistica dello spaziotempo che si estende all’infinito.
Credit: Shutterstock/R.T.Wohlstadter

Gli scienziati non sono sicuri di quale sia la forma dello spaziotempo, anche se con ogni probabilità esso ha una geometria piatta o euclidea, e si estende all’infinito. Ma se il tessuto spaziotemporale si estende indefinitivamente, ci aspettiamo che in qualche punto deve cominciare a replicarsi perché esiste un numero finito di modi con cui le particelle si possono sistemare nello spazio e nel tempo. Dunque, se si guarda abbastanza lontano, in linea teorica dovremmo incontrare un’altra replica di noi stessi o, meglio, infinite repliche di noi stessi. Alcune di queste repliche gemelle faranno esattamente ciò che noi stiamo facendo adesso mentre le altre si comporteranno in maniera completamente diversa. Ora, dato che l’Universo osservabile si estende da quando la radiazione ha cominciato ad apparire e a diffondersi nello spazio circa 13,7 miliardi di anni fa, lo spaziotempo oltre questa distanza può essere considerato come un universo vicino che si è già separato. In questo modo, esisterebbe una moltitudine di universi vicini come una sorta di gigantesco insieme di tasselli (universi) che compongono il puzzle (multiverso).


Universi a bolle  

Illustrazione artistica del concetto di universi-bolla.
Credit: Shutterstock/Victor Habbick

Oltre all’ipotesi degli universi multipli che sono creati dal tessuto dello spaziotempo che si estende in maniera infinita, altri universi potrebbero emergere da quella che viene chiamata la “inflazione eterna”. Il modello dell’inflazione afferma che l’Universo subì una rapida espansione esponenziale subito dopo il Big Bang, aumentando il suo volume di spazio come un palloncino delle feste quando viene gonfiato. L’inflazione eterna, introdotta da Alexander Vilenkin, suggerisce un processo in base al quale in alcune porzioni dello spazio l’inflazione si arresta mentre in altre prosegue e questa situazione dà luogo alla formazione di tanti “universi a bolle” isolati. In questo modo, il nostro Universo, dove l’inflazione si è arrestata permettendo la formazione di stelle e galassie, è come una sorta di piccola bolla cosmica in un immenso oceano di spazio che contiene altri universi-bolla che stanno ancora subendo il processo d’inflazione. In alcuni di questi universi-bolla, le leggi e le costanti della fisica potrebbero essere differenti dalle nostre rendendo così gli altri universi decisamente strani o magari con forme di vita aliena bizzarre.


 Universi paralleli

Illustrazione artistica del concetto di universi-membrana che fluttuano in uno spazio multidimensionale.
Credit: Shutterstock/Sandy MacKenzie

Un’altra idea che emerge dalla teoria delle stringhe si basa sul concetto dei “brana-universi”, cioè universi paralleli che giacciono sulle superfici a 11 dimensioni note come “membrane” o più semplicemente “brane”. Questa teoria è stata introdotta da Paul Steinhardt e Neil Turok come alternativa al modello cosmologico standard al fine di superare il problema della singolarità iniziale del Big Bang. Dunque, secondo la teoria delle stringhe esistono altre dimensioni spaziali nascoste, rispetto alle tre dimensioni spaziali e a quella temporale a cui siamo abituati, che danno luogo a “brane” tridimensionali che fluttuano in uno spazio multidimensionale e dove in ciascuna di esse esiste un determinato universo. Possiamo immaginare che ogni universo-brana sia come una fetta di pane che fluttua in uno spazio multidimensionale assieme a tante altre fette di pane. Queste brane non sono sempre parallele tra loro e perciò, di tanto in tanto, esse collidono causando big bang multipli ognuno dei quali causa la nascita di un nuovo universo.


 Universi figli

Credit: NASA/JPL

La meccanica quantistica, che descrive il mondo degli atomi e delle particelle elementari, suggerisce un altro modo per la formazione degli universi multipli. La teoria descrive il mondo che ci circonda in termini di probabilità e non di certezze perciò le sue equazioni matematiche implicano che tutte le possibili combinazioni di una determinata situazione potranno verificarsi nei rispettivi singoli universi. Ad esempio, se arriviamo ad un incrocio dove possiamo andare a sinistra o a destra, l’Universo in cui viviamo potrebbe dar luogo, secondo la meccanica quantistica, a due “universi-figli”: uno in cui si procede a sinistra e un altro in cui si procede a destra. Inoltre, in ogni universo esiste una nostra copia testimone di ciò che accade dell’una o dell’altra situazione, la quale crede, anche se non correttamente, che la propria realtà sia l’unica che esista.


 Universi matematici

Credit: WGBH Educational Foundation

Gli scienziati hanno a lungo dibattuto sul fatto che la matematica sia semplicemente uno strumento utile per descrivere le leggi fisiche dell’Universo o se essa rappresenti effettivamente la realtà fondamentale per cui le nostre osservazioni dell’Universo siano in definitiva percezioni imperfette della sua vera natura matematica. Se è vero il secondo caso, forse la particolare struttura matematica che sta alla base del nostro Universo non è solamente l’unica opzione e perciò tutte le possibili strutture matematiche possono esistere nei rispettivi singoli universi.


Per maggiori approfondimenti: Enigmi Astrofisici. Dal Big Bang al Multiverso

Un solo universo o infiniti universi?

Ricollegandomi al precedente post sul tema degli universi multipli, dove ho discusso il concetto di multiverso, volevo segnalare oggi l’interessante libro di Alex VilenkinUn solo mondo o infiniti? Alla ricerca di altri universi, edito da Cortina Raffaello .

Vilenkin è uno dei cosmologi di fama mondiale. Egli ha scritto una lunga serie di articoli che riguardano il modello dell’espansione inflazionistica che si basano sull’idea secondo cui l’Universo potrebbe contenere alcuni difetti topologici dovuti a transizioni di fase, così come vengono descritte dalla teoria delle particelle  e dalla cosmologia quantistica. Oggi il modello inflazionistico mette in risalto una serie di domande quali: Perché lo stato fisico primordiale era così caldo e denso? Come e perché l’Universo si è espanso? Cosa c’era prima del Big Bang? “Il nostro orizzonte cosmico è di 13,7 miliardi di anni-luce e oltre questo orizzonte ci potrebbero essere, forse, altri universi con leggi fisiche completamente diverse dal nostro“, dice Vilenkin. A differenza dei suoi predecessori, egli promuove il concetto d’inflazione eterna e le sue implicazioni che essa determina per il principio antropico. L’idea di Vilenkin è che l’inflazione abbia avuto un inizio ma rimane eterna, producendo in continuazione universi paralleli come vere e proprie “bolle cosmiche”. “Si ritiene che l’inflazione sia quasi terminata nella nostra regione di Universo mentre invece continua in altre regioni dello spaziotempo dando luongo ad un numero infinito di bolle“, aggiunge Vilenkin. Quasi metà del libro è dedicato alla descrizione del modello cosmologico standard e la sua estensione all’espansione inflazionistica. In molti modelli inflazionistici c’è un argomento associato alle fluttuazioni quantistiche di un campo scalare, l’inflatone, per cui ci saranno sempre regioni dello spaziotempo che sono soggette all’inflazione e altre in cui essa non avviene e, in un sottoinsieme di queste, esisteranno universi che hanno proprietà piuttosto simili al nostro Universo. Dunque, date le assunzioni basi della teoria quantistica dei campi, l’inflazione eterna sembra quel processo più ragionevole rispetto ai tanti modelli inflazionistici proposti anche se non è del tutto assodato. Se l’inflazione eterna ha luogo, allora Vilenkin è convinto che esisteranno infinite configurazioni di universi ognuno dei quali saranno caratterizzate da proprie costanti fisiche della natura. Se tutto questo poi sia vero oppure no dipenderà dal modello, dalla natura stessa del campo inflatone e dai dettagli della teoria quantistica della gravità. A tal proposito, Vilenkin affronta una parte del libro dando una breve descrizione della teoria delle stringhe. Ma a mio parere, non ci dobbiamo dimenticare che la Fisica è una disciplina osservativa, basata sul metodo sperimentale. Oggi non siamo in grado di osservare altri big bang o regioni di spazio soggette ad una eventuale inflazione. Se queste esistono, si troveranno comunque al di fuori del nostro orizzonte osservativo, perciò sarà difficile verificare la loro presenza.