Illustrazione di un flare gigante sulla superficie della gigante rossa Mira A. Sullo sfondo, è mostra la compagna Mira B sulla quale sta cadendo del materiale. Credit: Katja Lindblom
Una serie di osservazioni realizzate con ALMA hanno permesso di rivelare ciò che sembra essere un gigantesco brillamento (flare) emergere dalla superficie di Mira A, una delle più vicine e famose giganti rosse. Questa attività, osservata in questa classe di stelle simile a quella che si ha sulla superficie del Sole, rappresenta una vera e propria sorpresa. La scoperta potrebbe fornire nuovi indizi per spiegare come i venti stellari provenienti dalle giganti rosse contribuiscono al cosiddetto “ecosistema” della Via Lattea. I risultati di questo studio sono pubblicati su Astronomy & Astrophysics.
In questa nuova suggestiva immagine ottenuta dall’osservatorio dell’ESO, si possono ammirare stelle giovani disposte come in una sorta di “abbraccio cosmico” mentre sullo sfondo il panorama è dominato da nubi di gas e strisce di polvere. L’ammasso stellare, noto come NGC 3293, era probabilmente solo una nube interstellare circa dieci milioni di anni fa, ma appena le stelle hanno iniziato a formarsi è divenuto un gruppo di stelle brillanti che vediamo oggi. Ammassi come questi sono laboratori celesti che permettono agli astronomi di capire meglio come evolvono le stelle.
Grazie ad una serie di osservazioni effettuate mediante il telescopio spaziale Hubble, un gruppo di astronomi sono stati in grado di determinare il ‘certificato di nascita’ di una stella che è stata a lungo studiata.
“Si tratta dell’oggetto più vecchio che conosciamo e di cui abbiamo ricavato in maniera accurata la sua età”, dichiara Howard Bond della Pennsylvania State University e dello Space Science Telescope Institute. Il valore stimato dell’età della stella è di 14,5 miliardi di anni, con una incertezza di 0,8 miliardi di anni, che a prima vista ne farebbe l’oggetto più vecchio della sua categoria ma andrebbe in contraddizione con l’età dell’Universo che è di 13,7 miliardi di anni. Nonostante questi risultati siano in contraddizione, alcune stime precedenti che risalgono al 2000 danno dei valori ancora maggiori, ossia di 16 miliardi di anni. Naturalmente, ciò crea un problema per i cosmologi. “Forse, il nostro modello cosmologico è sbagliato o forse i modelli dell’evoluzione stellare sono sbagliati o, ancora, potrebbe essere sbagliata la stima della distanza della stella”, dice Bond. Dunque il passo più importante da fare è stato quello di determinare in maniera accurata la distanza della stella. La stima dell’età ottenuta mediante le osservazioni realizzate con il telescopio spaziale Hubble riducono l’intervallo degli errori delle misure per cui l’età della stella andrebbe a sovrapporsi nell’intervallo dei valori che definiscono l’età dell’Universo, così come è stato determinato indipendentemente dal tasso di espansione dello spazio, dall’analisi della radiazione cosmica di fondo e dalle misure del decadimento radioattivo. Questa vera “stella di Matusalemme”, catalogata con la sigla HD 140283, è già conosciuta agli astronomi da almeno un secolo a causa del suo elevato moto proprio, una evidenza del fatto che l’oggetto sembra essere una sorta di “visitatore spaziale” che arriva nei dintorni del nostro ambiente stellare. L’orbita allungata della stella è dovuta ad un evento di cannibalismo galattico e perciò essa transita nelle vicinanze del Sistema Solare alla fantastica velocità di circa 1.200.000 Km/h. Di fatto, essa impiega circa 1.500 anni per descrivere un tratto di orbita equivalente alla distanza angolare sottesa dalla Luna Piena. Si pensi che il suo moto proprio angolare è così rapido, circa 0,13 milliarcosecondi/ora, che lo stesso telescopio spaziale Hubble è stato in grado di fotografare letteralmente il suo movimento dopo qualche ora di osservazione. La stella, che si trova attualmente nella fase di gigante rossa, può essere osservata con un binocolo potente come oggetto di 7° magnitudine nella costellazione della Bilancia.
Durante gli anni ’50, gli astronomi conclusero che questa stella presentava una mancanza di elementi pesanti rispetto alle altre stelle vicine dell’ambiente galattico. Le stelle dell’alone galattico sono state le prime a formarsi e rappresentano una popolazione stellare molto vecchia. Questo significa che la stella si è originata molto tempo prima che lo spazio fosse riempito di elementi pesanti che sono prodotti nelle stelle attraverso la nucleosintesi stellare. L’abbondanza di elementi pesanti è di circa 250 volte inferiore a quella presente nel Sole o nelle altre stelle vicine. Il potere esplorativo del telescopio spaziale Hubble è stato sfruttato per ricavare con una precisione più elevata la distanza ottenendo un valore di 190,1 anni-luce. Il metodo che hanno utilizzato Bond e colleghi per stimare la distanza della stella è quello della cosiddetta parallasse trigonometrica. La parallasse delle stelle vicine può essere misurata osservando lo stesso oggetto da due angoli diversi che corrispondono a due punti di osservazione estremi dell’orbita terrestre. La distanza vera della stella può quindi essere ricavata direttamente attraverso una semplice triangolazione. Una volta determinata la distanza, gli astronomi possono ricavare la luminosità intrinseca della stella e di conseguenza si può risalire alla sua età. Prima delle osservazioni effettuate con il telescopio spaziale Hubble, il satellite Hipparcos dell’ESA aveva permesso di ottenere una misura precisa della parallasse della stella benché avesse fornito un valore per l’età con una incertezza di 2 miliardi di anni. La parallasse misurata da Hubble è comunque virtualmente identica a quella ricavata da Hipparcos anche se la precisione di Hubble è cinque volte superiore. Dunque, il lavoro di Bond è stato quello di restringere l’intervallo degli errori in modo tale che le stime dell’età della stella fossero cinque volte più precise. Utilizzando tutta una serie di parametri descritti nei modelli dell’evoluzione stellare, gli astronomi hanno trovato che da un lato la stella possiede una quantità di idrogeno insufficiente per iniziare il ciclo della fusione nucleare, il che implica che essa bruci il combustibile molto più velocemente, e dall’altro che essa possiede un elevato rapporto ossigeno/ferro rispetto a quanto previsto dai modelli. Questi risultati contribuiscono a far abbassare il valore stimato dell’età della stella. Bond è convinto che nuovi dati relativi all’abbondanza dell’ossigeno potrebbero ulteriormente abbassare l’età della stella dato che essa si sarebbe formata qualche tempo dopo il Big Bang quando cioè l’Universo era già ricco di ossigeno. Dunque, abbassare il limite superiore del valore stimato per l’età della stella potrebbe portarla ad essere, in maniera inequivocabile, più giovane rispetto all’età dell’Universo. Questo oggetto peculiare molto antico ha certamente subito tutta una serie di cambiamenti durante il suo ciclo vitale. È molto probabile che la stella si sia originata in una galassia nana che successivamente è stata catturata gravitazionalmente dalla Via Lattea che andava a formarsi nel corso di 12 miliardi di anni.
È quanto emerge da uno studio recente in base al quale anche le stelle che si trovano nella fase finale della loro evoluzione potrebbero ancora ospitare dei pianeti sui quali la vita, se esiste, dovrebbe essere rivelata con le future osservazioni spaziali entro i prossimi dieci anni. Queste considerazioni incoraggianti derivano da una serie di studi sui pianeti di tipo terrestre che orbitano attorno alle nane bianche. I ricercatori hanno concluso che si potrebbe rivelare l’ossigeno presente nelle atmosfere planetarie molto più facilmente rispetto al caso dei pianeti che orbitano, invece, attorno alle stelle di tipo solare.
“Nella ricerca di segnali biologici di tipo extraterrestre, le prime stelle che dovremmo studiare sono le nane bianche”, spiega Avi Loeb del Harvard-Smithsonian Center for Astrophysics (CfA) e direttore dell’Institute for Theory and Computation. Quando una stella come il Sole termina il suo ciclo vitale, spazza nel mezzo interstellare i suoi strati più esterni lasciandosi dietro un nucleo denso, caldo e collassato che viene chiamato nana bianca. Queste stelle morenti hanno le dimensioni della Terra. La stella si raffredda lentamente e si indebolisce nel corso tempo anche se può trattenere ancora a lungo del calore residuo per riscaldare, per così dire, un pianeta vicino anche per miliardi di anni. Dato che una nana bianca è molto più piccola e più debole del Sole, un pianeta dovrebbe trovarsi molto vicino alla stella affinchè l’acqua si trovi sulla superficie allo stato liquido e perciò il pianeta sia abitabile. Inoltre, questo pianeta dovrebbe orbitare attorno alla stella una volta ogni 10 ore e trovarsi ad una distanza di circa 1,5 milioni di chilometri. Prima che la stella diventi una nana bianca, essa passa attraverso la fase di gigante rossa inglobando e distruggendo qualsiasi pianeta che si trovi vicino al suo raggio d’azione. Di conseguenza, un pianeta potrebbe arrivare nella zona abitabile (post) dopo che la stella sia evoluta nella fase di nana bianca. Questo pianeta potrebbe comunque formarsi nuovamente dall’accrescimento di polveri e gas, cioè sarebbe un pianeta di ‘seconda generazione’, oppure potrebbe migrare verso l’interno dalle regioni più distanti. Insomma, se esistono pianeti nella zona abitabile delle nane bianche dovremmo prima o poi trovarli. L’abbondanza di elementi pesanti sulla superficie delle nane bianche implica che una frazione significativa di queste stelle collassate possiede pianeti rocciosi. Loeb e il suo collega Dan Maoz dell’Università di Tel Aviv stimano che una survey delle 500 nane bianche più vicine potrebbe darci alcuni indizi sulla presenza di una o più terre abitabili. Il miglior metodo per rivelare questi pianeti consiste nella ricerca del transito quando la luce di una stella si indebolisce nel momento in cui un pianeta passa davanti al disco stellare. Dato che una nana bianca ha circa le dimensioni della Terra, un pianeta di tipo terrestre dovrebbe bloccare una maggiore frazione di luce e produrre così un segnale caratteristico della sua presenza. Ancora più importante è il fatto che gli astronomi sono in grado di studiare le atmosfere dei pianeti che transitano davanti al disco della propria stella. Quando la luce della nana bianca brilla attraverso l’anello di luce che circonda il disco planetario, l’atmosfera assorbe parte della radiazione. Durante questo momento della fase del transito si producono delle ‘impronte chimiche’ da cui è possibile capire se l’atmosfera contiene vapore acqueo o addirittura ‘segni di vita’ dati dalla presenza di ossigeno. Sulla Terra, l’atmosfera viene continuamente rifornita di ossigeno attraverso la fotosintesi dovuta alle piante. Se un giorno tutte le forme di vita cessassero di esistere sulla Terra, la nostra atmosfera diventerebbe rapidamente priva di ossigeno che si dissolverebbe negli oceani e ossiderebbe la superficie terrestre. Il telescopio spaziale James Webb (JWST), che sarà lanciato in orbita entro la fine di questo decennio, promette di essere un buon strumento per rivelare la presenza di gas nelle atmosfere di questi mondi alieni. Loeb e Maoz hanno simulato uno spettro sintetico sulla base di ciò che JWST potrebbe vedere analizzando l’atmosfera di un pianeta extrasolare che orbita attorno ad una nana bianca. I dati suggeriscono che sia l’ossigeno che il vapore acqueo potrebbero essere rivelati con sole poche ore di osservazione. Ma un altro studio recente mostra che il pianeta abitabile più vicino è molto probabile che si trovi ad orbitare attorno ad una nana rossa. Infatti, secondo Courtney Dressing e David Charbonneau del Dipartimento di Astronomia di Harvard dato che la nana rossa, nonostante sia più piccola e più debole del Sole, è molto più brillante e più grande di una nana bianca, il suo alone di luce potrebbe sovrastare il debole segnale dell’atmosfera di un pianeta che orbita attorno alla stella. Il telescopio spaziale JWST sarebbe perciò costretto ad osservare centinaia di ore di transito e sperare di catturare la composizione chimica dell’atmosfera planetaria. Comunque sia, Loeb rimane convinto che il pianeta più vicino e per il quale possiamo essere in grado di verificare l’esistenza di vita si troverà attorno ad una nana bianca.
L’immagine mostra il momento in cui l’atmosfera solare ingloba la Terra. Courtesy: Discovery Channel
Ormai, tutti sanno che la “profezia della fine del mondo” nasce da una interpretazione del calendario Maya in base alla quale in corrispondenza del solstizio d’inverno il 21 Dicembre 2012 inizierebbe il cosiddetto quinto ciclo, cioè un passaggio da un’era ad un’altra, una sorta di rinascita esistenziale. Tuttavia, non ci sarà nessuna fine del mondo anche perchè il calendario Maya non ha mai annunciato il verificarsi di eventi catastrofici. Nonostante ciò, alcuni studiosi ritengono che non esiste, di fatto, nessuna prova reale di un calendario appartenente ai Maya e quando si fa riferimento alla “Pietra del Sole” si commette un errore poichè essa appartiene al popolo azteco. Dunque, durante il 21 Dicembre 2012 non ci sarà alcun allineamento di pianeti, o particolari tempeste solari o ancora impatti dovuti ad asteroidi, eventi che sono stati ampiamente smentiti e scientificamente esclusi. Per un maggiore approfondimento, Vi rimando alla pagina web della NASA Beyond 2012: Why the World Won’t End.
Ma allora, quando sarà, se ci sarà, la fine del mondo? In realtà, dobbiamo dire che la ‘vera’ fine del mondo, ossia il destino della Terra e dei suoi abitanti, è certamente legato al ciclo vitale del Sole. La nostra stella ha dimensioni medio-piccole ed è costituita dal 74% circa da idrogeno, dal 25% circa da elio, più altri elementi pesanti presenti in tracce. La classificazione spettrale del Sole è G2 V, cioè si tratta di una nana gialla: G2 indica che la stella ha una temperatura superficiale di quasi 6000 gradi Centigradi, la V indica che la stella si trova nella sequenza principale, cioè in una lunga fase di equilibrio stabile in cui avvengono nel suo nucleo le reazioni di fusione nucleare per cui l’idrogeno fonde per formare elio. Tale processo genera ogni secondo una grande quantità di energia che viene emessa nello spazio sotto forma di radiazioni elettromagnetiche, flusso di particelle sottoforma di vento solare, e neutrini. La radiazione solare, emessa fondamentalmente come luce visibile ed infrarossi, permette la vita sul nostro pianeta e fornisce l’energia necessaria ad attivare i principali meccanismi che ne stanno alla base. I processi di fusione nucleare fanno sì che la stella rimanga in uno stato di equilibrio, sia idrostatico, ossia non si espande a causa della pressione di radiazione dovuta alle reazioni termonucleari, né si contrae, per via della gravità cui sarebbe naturalmente soggetta, sia termico. Una stella di massa paragonabile a quella del Sole impiega circa 10 miliardi di anni per esaurire completamente l’idrogeno nel suo nucleo. Dunque, quale sarà il destino del Sole? Il Sole si trova a circa metà strada nella propria sequenza principale. Proviamo allora ad immaginare di essere tra cinque miliardi di anni nel futuro. Il Sole entrerà in una fase di forte instabilità, detta gigante rossa: nel momento in cui l’idrogeno del nucleo sarà totalmente convertito in elio, gli strati immediatamente superiori subiranno un collasso gravitazionale dovuto alla mancanza della pressione di radiazione prodotta dalle reazioni termonucleari. Il collasso gravitazionale causerà un incremento della temperatura fino a raggiungere valori tali da innescare la fusione dell’idrogeno negli strati superiori determinando l’espansione della stella fino a superare l’orbita di Mercurio. L’espansione causerà un raffreddamento del gas per cui la stella apparirà di un colore giallo intenso. Quando anche l’idrogeno dello strato superiore al nucleo sarà totalmente convertito in elio, dopo poche decine di milioni di anni, si avrà un nuovo collasso gravitazionale che causerà un aumento della temperatura del nucleo di elio innescando improvvisamente la fusione dell’elio in carbonio e ossigeno. La stella subirà una riduzione delle proprie dimensioni, passando dal ramo delle giganti rosse al cosiddetto ramo orizzontale del diagramma di Hertzsprung-Russell. Ma a causa delle elevatissime temperature del nucleo, la fusione dell’elio si esaurirà in tempi brevi, cioè qualche decina di milioni di anni, e i prodotti di fusione, non impiegabili in nuovi cicli termonucleari a causa della piccola massa della stella, si accumuleranno inerti nel nucleo. Intanto, dato che non sarà di nuovo presente la pressione di radiazione che spingeva verso l’esterno, avverrà un successivo collasso gravitazionale che causerà la fusione dell’elio, nel guscio che avvolge il nucleo, e dell’idrogeno, nello strato immediatamente superiore ad esso. Queste nuove reazioni di fusione nucleare produrranno una quantità di energia talmente elevata da provocare una nuova espansione della stella che raggiungerà così dimensioni prossime a circa 1 UA, ossia circa 100 volte quelle attuali, tanto che la sua atmosfera arriverà ad inglobare molto probabilmente Venere. Rimane ancora incerto il destino della Terra: alcuni studiosi ritengono che anche il nostro pianeta verrà risucchiato dalla stella, altri, invece, ipotizzano che il pianeta potrà salvarsi poiché la perdita di massa da parte della nostra stella potrebbe allargare l’orbita terrestre che si sposterebbe di conseguenza fino a quasi 2 UA. Nonostante ciò, il nostro pianeta sarà ormai morto dato che gli oceani saranno evaporati a causa del forte calore e gran parte dell’atmosfera verrà dispersa nello spazio dall’intensa energia termica che incrementerà l’energia cinetica delle molecole che compongono l’atmosfera consentendo loro di vincere l’attrazione gravitazionale della Terra. Si calcola che tutto ciò avverrà entro i prossimi 3,5 miliardi di anni, ossia ancor prima che il Sole entri nella fase di gigante rossa. Entro 7,8 miliardi di anni, esaurito ogni processo termonucleare, il Sole espanderà i suoi strati più esterni che verranno spazzati via sottoforma di “super vento solare” creando una nebulosa planetaria mentre le parti più interne saranno collassate e daranno origine ad una nana bianca che avrà circa le dimensioni della Terra. Percorrendo le regioni più esterne del Sistema Solare, la nebulosa planetaria spazzerà le atmosfere gassose dei pianeti giganti, quali Giove e Saturno, rendendo visibile solo la parte metallica e rocciosa dei loro nuclei. Ciò che resterà dei pianeti più esterni vagherà nello spazio interstellare dato che la gravità della nana bianca sarà insufficiente per trattenerli in orbita. Intanto, dopo alcuni miliardi di anni, la nana bianca avrà irradiato tutto il suo calore residuo nello spazio al punto da diventare una nana bruna e raggiungere così la stessa temperatura del mezzo interstellare.
Il seguente video mostra, accompagnato dal commento di alcuni astronomi, quale sarà il destino del Sole.
E’ a tutti noto che sin dalla sua nascita, l’Universo si sta espandendo e continua ad evolversi formando strutture sempre più complesse a partire dalle particelle elementari. Oggi, un gruppo di fisici teorici hanno ottenuto nuovi indizi in merito ad una reazione nucleare che risulta di fondamentale importanza per l’origine della vita come noi la conosciamo.
Noto come processo 3-alpha, questa reazione nucleare è responsabile dell’abbondanza dell’elemento carbonio presente nell’Universo. Per diversi anni, il meccanismo fisico mediante il quale le stelle emettono luce è stato compreso attraverso un processo a due fasi. Di recente, alcuni fisici hanno rivisto questo processo per analizzare il meccanismo più da vicino dietro il quale si cela la presenza dell’isotopo più importante per la vita: il carbonio-12. In particolare, gli scienziati si sono trovati ad affrontare un problema relativo al tasso di produzione del carbonio-12 a basse temperature. I calcoli che sono stati ottenuti in precedenza dal gruppo di ricercatori guidato da Kazuyuki Ogata, un professore di fisica nucleare della Kyushu University in Fukuoka nel Giappone, indicano che le stelle evolvono così rapidamente che non riescono a raggiungere la fase di gigante rossa. Ma questo, di fatto, non è vero in quanto lo spazio è pieno di numerosissime stelle che si trovano in questa fase avanzata dell’evoluzione stellare. Dunque c’è un problema probabilmente associato ai metodi utilizzati. Sappiamo che il carbonio è il quarto elemento più abbondante nell’Universo e l’isotopo carbonio-12 è la sua forma più comune. Caratterizzato da 6 protoni e 6 neutroni, questo nucleo molto semplice rappresenta la base di tutta la vita, almeno come noi la conosciamo. Tuttavia, i processi che determinano la formazione di questo isotopo e la sua abbondanza non sono così semplici. Di fatto, una frazione di secondo dopo il Big Bang, i quark e i gluoni si unirono per formare protoni e neutroni. Appena tre minuti più tardi, apparvero i primi nuclei di idrogeno e di elio. Ma deve passare almeno un milione di anni prima che gli elettroni formino atomi neutri e circa duecento milioni di anni affinchè appaiano le prime stelle. All’interno del calderone stellare, i protoni iniziarono a combinarsi in nuclei di elio attraverso una sequenza di reazioni nucleari. Dopo, però, tali processi nucleari ebbero un periodo di arresto. Ad esempio, se aggiungiamo un singolo protone all’atomo di elio, otteniamo litio-5, un isotopo che non esiste in natura. Se due nuclei di elio fondono, si ottiene berillio-8, un altro nucleo che non esiste in accordo alle leggi della fisica nucleare. Chiaramente, le stelle continuarono la loro evoluzione, creando tutti gli elementi possibili che vediamo oggi. Ma allora la domanda è: come è possibile? Questo puzzle ha tenuto impegnati gli scienziati per diversi anni perché se non siamo in grado di spiegare l’abbondanza di carbonio-12, diventa quasi impossibile spiegare come si sia formato l’Universo. La risposta deriva dalla reazione 3-alpha che coinvolge tre nuclei di elio. Nonostante il berillio-8 decada dopo qualche nanosecondo, nel caso in cui la stella sia abbastanza calda, una terza particella alpha si fonde con questo isotopo. E dato che l’energia di un nucleo di berillio-8 sommata all’energia di una particella alpha è quasi equivalente a quella dell’isotopo di carbonio-12, si crea una risonanza del processo nucleare che causa un incremento al tasso di produzione del carbonio-12. Tuttavia, c’è un altro modo per cui le stelle sono in grado di produrre carbonio-12. A basse temperature, quando l’energia non è ancora sufficiente per dar luogo al processo di risonanza, l’isotopo carbonio-12 può essere prodotto attraverso la fusione simultanea di tre particelle alpha. Il gruppo di Kyushu è stato così in grado di ottenere previsioni teoriche più adeguate del tasso di produzione del carbonio-12 che sono in accordo con i modelli precedenti nel caso di temperature elevate. A temperature più basse, i loro risultati suggeriscono un incremento del tasso di produzione del carbonio-12 pari a circa 10 trilioni di volte maggiore rispetto alle stime precedenti. Insomma, i nuovi calcoli permettono ancora l’esistenza delle stelle giganti che sono quindi salve. Ora si spera che in futuro queste previsioni possano fornire nuovi scenari che riguardano alcuni problemi astrofisici ancora irrisolti e che riguardano le stelle novae e le supernovae.
Grazie ad una serie di osservazioni realizzate con l’Atacama Large Millimeter / submillimeter Array (ALMA), un gruppo di astronomi hanno scoperto una struttura a spirale del tutto inaspettata presente intorno alla stella R Sculptoris, una stella vecchia distante 1500 anni-luce nella costellazione dello Scultore. Si tratta della prima volta che una tale struttura tridimensionale, caratterizzata da un guscio esterno sferico, è stata trovata attorno ad una stella gigante rossa. Si ritiene che la strana forma sia dovuta ad una stella compagna ‘nascosta’ che orbita attorno alla stella principale. Questo studio rappresenta uno dei primi risultati scientifici di ALMA.
Il video seguente mostra una serie di regioni ‘a fette’ ciascuna delle quali è stata presa ad una frequenza leggermente diversa. Queste regioni permettono di rivelare il guscio tridimensionale intorno alla stella che appare come un anello circolare e sembra diventare più grande e più piccolo. Infine, si nota una chiara struttura a spirale nella materia distribuita verso le regioni più interne e che si vede meglio circa a metà della sequenza video.
Gli astronomi hanno trovato la prima evidenza di ciò che accadrà ai pianeti più interni del nostro Sistema Solare: la distruzione di un pianeta da parte della sua stella. Le osservazioni indicano che il processo è iniziato proprio quando la stella ha cominciato ad espandersi diventando una gigante rossa, analogamente a quanto succederà al Sole tra cinque miliardi di anni. Il gruppo di ricercatori è stato guidato da Alexander Wolszczan, Evan Pugh Professor of Astronomy and Astrophysics at Penn State University che è stato l’astronomo a scoprire il primo pianeta extrasolare.
La scoperta è avvenuta grazie ad una serie di osservazioni condotte mediante il Hobby-Eberly Telescope che avevano lo scopo di analizzare la gigante rossa, denominata con la sigla BD+48 740, e di cercare eventuali pianeti in orbita attorno alla stella. I dati indicano la presenza nella stella di una composizione chimica peculiare e l’insolita orbita ellittica di un pianeta massiccio, almeno 1,6 volte Giove, che ancora sopravvive. L’analisi spettroscopica indica la presenza di una notevole quantità di litio, un elemento raro che è stato creato subito dopo il Big Bang. Il litio viene facilmente distrutto nelle stelle e perciò è proprio la sua abbondanza che risulta anomala. Tuttavia, gli astrofisici teorici hanno identificato pochi processi fisici, a parte il Big Bang, in cui il litio può essere creato nelle stelle. Nel caso di BD+48 740 è probabile che la sua elevata produzione sia stata incrementata grazie alla presenza di materia delle dimensioni di un pianeta che dopo aver spiraleggiato verso la stella ha riscaldato l’elemento litio mentre la stella lo stava processando. L’altra peculiarità di questo sistema è la presenza di un pianeta massiccio che segue un orbita estremamente ellittica, leggermente più allungata rispetto a quella di Marte nel punto più vicino alla stella e decisamente più estesa nel punto più lontano. Queste orbite sono insolite soprattutto nei sistemi planetari dove la stella si trova in una fase di evoluzione e perciò l’orbita di questo pianeta rimane al momento la più ellittica mai osservata. Gli scienziati ritengono che il pianeta vittima della stella abbia dato, per così dire, una spinta gravitazionale al pianeta sopravvissuto prima di ‘cadere’ verso la stella portandolo così in un’orbita eccentrica come la traiettoria descritta da un boomerang.
Quando il Sole avrà esaurito tutto l’idrogeno nucleare, che gli permette di brillare ormai da cinque miliardi di anni, esso comincerà il suo ciclo di evoluzione stellare che lo porterà a diventare una gigante rossa. Le sue dimensioni saranno tali da sfiorare l’orbita di Marte. Ma state tranquilli, tutto ciò avverrà tra circa cinque miliardi di anni. Per capire allora quale sarà l’evoluzione finale di una stella come il Sole, gli astrofisici guardano altri sistemi stellari ed in particolare essi hanno osservato di recente la morte di una stella di tipo solare che si trova ad una distanza di circa 550 anni-luce. La stella, denominata Chi Cygni , ha cominciato a pulsare come una sorta di gigantesco cuore e si trova attualmente nelle sue fasi finali del ciclo di evoluzione stellare.
“Questo studio apre una nuova finestra verso la comprensione di quello che sarà il destino del Sole tra circa 5 miliardi di anni“, dice Sylvestre Lacour dell’Osservatorio di Parigi. Gli scienziati hanno paragonato il processo ad una macchina in corsa a tutto gas. “Abbiamo creato una animazione della pulsazione della stella utilizzando immagini reali“, dice ancora Lacour. “I dati indicano che le pulsazioni non sono solamente di tipo radiale, ma casuali, forse dovute a delle disomogeneità, come la grande macchia rossa apparsa quando la stella si trova alla dimensione minima“. Le stelle che si trovano in questa fase sono note come variabili di tipo Mira . Una volta che inizia il ciclo di pulsazione, la stella butta fuori gli strati più esterni che creano successivamente, dopo qualche centinaia di migliaia di anni, una spettacolare nebulosa planetaria. Chy Cygni ha un ciclo di pulsazione pari a 408 giorni e quando si trova nella fase di minimo appaiono sulla superficie macchie di plasma ad altissima temperatura che formano una struttura granulare, analoga a quella che si osserva sulla superfice del Sole, ma la dimensione dei granuli è molto più grande. Si calcola che man mano che la stella si raffredda e diventa via via sempre più debole, il suo diametro aumenta sempre di più al punto che, nel Sistema Solare, raggiungerebbe la fascia degli asteroidi.
Bisogna dire che lo studio di questi oggetti è molto complesso. Ad esempio, nel caso delle variabili di tipo Mira, le stelle si trovano all’interno di un guscio denso e compatto costituito da polveri e gas. Quindi per osservare la superficie della stella, gli astrofisici devono utilizzare la banda infrarossa dello spettro elettromagnetico. Inoltre, le stelle si trovano a distanze enormi perciò appaiono molto piccole. Anche se esse hanno le dimensioni tipiche di una stella come il Sole, la distanza a cui esse si trovano li rende tali al punto che diventa come osservare dalla Terra una casetta sulla superficie della Luna. I telescopi tradizionali non hanno l’adeguato potere esplorativo perciò gli scienziati devono ancora una volta ovviare il problema facendo uso della cosiddetta tecnica interferometrica che permette di combinare la luce proveniente da diversi telescopi per arrivare ad avere un potere esplorativo pari a quello di un singolo telescopio che ha le dimensioni equivalenti alla distanza a cui si trovano i singoli strumenti ottici. Per fare questo i ricercatori hanno utilizzato l’Infrared Optical Telescope Array (IOTA) dello Smithsonian Astrophysical Observatory , che si trova presso l’Osservatorio Whipplesul Monte Hopkins, in Arizona. “IOTA ci permette di avere prestazioni uniche“, dice Marc Lacasse dell’Harvard-Smithsonian Center for Astrophysics (CfA), “Grazie a IOTA è stato possibile ottenere delle immagini con una nitidezza tale da vedere dettagli circa 15 volte più piccoli rispetto alle immagini ottenute con il telescopio spaziale Hubble“.
Insomma, l’interferometria sembra essere la tecnica più promettente per studiare la vera natura di oggetti piccoli e compatti, come stelle, dischi di accrescimento attorno a buchi-neri, regioni di formazione di dischi protoplanetari, più di quanto sia stato fatto in precedenza utilizzando semplicemente modelli o animazioni grazie all’utilizzo della computer grafica.