Archivi tag: gamma-rays

Uncovering a gamma-ray excess at the galactic center

At left is a map of gamma rays with energies between 1 and 3.16 GeV detected in the galactic center by Fermi’s LAT; red indicates the greatest number. Prominent pulsars are labeled. Removing all known gamma-ray sources (right) reveals excess emission that may arise from dark matter annihilations. Image Credit: T. Linden, Univ. of Chicago
Grazie ad una serie di osservazioni del centro galattico eseguite con il telescopio spaziale Fermi ad opera di un gruppo di ricercatori appartenenti al Fermi National Accelerator Laboratory (Fermilab), all’Harvard-Smithsonian Center for Astrophysics (CfA), al Massachusetts Institute of Technology (MIT) e all’University of Chicago, emerge che l’eccesso di emissione di alta energia visibile di raggi gamma possa essere associato con qualche forma di materia scura, forse l’indizio più forte ad oggi in mano agli astronomi.

The new maps allow us to analyze the excess and test whether more conventional explanations, such as the presence of undiscovered pulsars or cosmic-ray collisions on gas clouds, can account for it“, said Dan Hooper, an astrophysicist at Fermilab in Batavia, Ill., and a lead author of the study. “The signal we find cannot be explained by currently proposed alternatives and is in close agreement with the predictions of very simple dark matter models“.

More at NASA: Fermi Data Tantalize With New Clues To Dark Matter

arXiv: The characterization of the gamma-ray signal from the central Milky Way: A compelling case for annihilating dark matter

 
The following animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA’s Fermi. Raw data transitions to a view with all known sources removed, revealing a gamma-ray excess hinting at the presence of dark matter.
 
Pubblicità

Possible evidence for dark matter particles

Dark matter, the mysterious substance estimated to make up approximately more than one-quarter of the mass of the Universe, is crucial to the formation of galaxies, stars and even life but has so far eluded direct observation. At a recent UCLA symposium attended by 190 scientists from around the world, physicists presented several analyses that participants interpreted to imply the existence of a dark matter particle.
The likely mass would be approximately 30 billion electron-volts“, said the symposium’s organizer, David Cline, a professor of physics in the UCLA College of Letters and Science and one of the world’s experts on dark matter. The physicists at the Feb. 26–28 event were in agreement that “there seems to be an excess in the available data that could be due to dark matter“, Cline said. “At this symposium, it was obvious that excitement is building in the fields of dark matter theory and, especially, detection“, said Cline, who noted that there are several ways dark matter can be observed and that all were discussed at the UCLA meeting. “Because dark matter makes up the bulk of the mass of galaxies and is fundamental in the formation of galaxies and stars, it is essential to the origin of life in the Universe and on Earth“, Cline said. The first evidence for dark matter was discovered in 1933 using the Mt. Wilson telescope outside of Los Angeles. More recently, various theoretical models and detector improvements have made it possible to search for dark matter particles at extremely sensitive levels, some of the most sensitive measurements made by any scientists in the world. One search technique involves using the vast amount of dark matter in our galaxy. The NASA Fermi Satellite Telescope, an international collaboration involving NASA, the Goddard Space Flight Center and the SLAC National Accelerator Laboratory, searches for gamma rays, very high-energy light particles, from this dark matter. There are models of dark matter that would allow a signal in the galactic dark matter consistent with the claims at the meeting and provide a small interaction consistent with the “null results” in the direct dark matter searches all over the world. Much larger direct dark matter detectors are being planned in the U.S., Italy, Canada and China (including Xenon 3 Ton, LUX-ZEPLIN 7 Ton and DarkSide, which will weigh five tons). “These larger detectors potentially could see a dark matter signal in the next few years“, Cline said.
Dark matter is widely thought to be a kind of massive elementary particle that interacts weakly with ordinary matter. Physicists refer to these particles as WIMPS, for weakly interacting massive particles, and think they originated from the Big Bang. WIMPs are thought to be streaming constantly through the solar system and the Earth.
Another search method is to look for an interaction of a WIMP with xenon or argon nuclei and others (like germanium) in very low-background laboratories deep underground in Italy, the U.S., Canada, China and other countries. While these experiments have seen no signal of a WIMP above 30 billion electron volts, “there is no incompatibility with the interesting excess in the FERMI data“, Cline said. “The discovery of the Higgs boson, which won the 2013 Nobel Prize in physics, plays a role in the search for dark matter“, Cline said, adding that this topic was discussed in detail at the meeting. “Dark matter“, he said, “could consist of axions, WIMPs or sterile neutrinos, all of which were discussed at the symposium” (post). The UCLA dark matter symposium is convened every two years; this was the 11th such meeting. Cline said he and his colleagues hope to clarify the dark matter puzzle at the 2016 symposium.
It was at this same dark matter symposium in 1998 that two groups of scientists reported that the Universe is accelerating, as well as expanding, a finding Cline described as “one of the greatest discoveries in the history of science”.
See more on last week’s conference.
UCLA: Possible evidence for dark matter particle presented at UCLA physics symposium

TeV Particle Astrophysics 2013

TeV Particle Astrophysics (TeVPA) is an annual international meeting in particle astrophysics. The UC Irvine particle physics and astrophysics groups will host TeVPA in 2013 at Irvine, California.

This meeting will focus on topical issues in:

  • sources and propagation of cosmic rays,
  • high-energy gamma rays,
  • multi-wavelength probes of high-energy astrophysics,
  • high-energy neutrino physics
  • searches for dark matter.

33rd International Cosmic Ray Conference

The 33rd International Cosmic Ray Conference (ICRC2013) will be held from 2-9 July, 2013, in Rio de Janeiro, Brazil. The Conference is organized under the auspices of the International Union of Pure and Applied Physics (IUPAP) and is hosted by the Centro Brasileiro de Pesquisas Físicas (CBPF). The ICRC is the major conference in the area of Astroparticle and Solar Physics, and aims to cover all areas of research under this heading.

Specifically these are: 1. Solar and Heliospheric Physics; 2. Cosmic Ray Physics; 3. Gamma Ray Astronomy; 4. Neutrino Astronomy; 5. Dark Matter Physics.

Those that attend regularly this conference will notice that there are new features:

– the inclusion of Dark Matter research as a main branch of the program;

– a Scientific Program Committee of leading experts on the areas mentioned above, will help in setting an attractive topical scientific program.

RICAP13 on Astro-Particle Physics

RICAP-13 will be the fourth edition of the RICAP Conference. The acronym stands for Roma International Conference on Astro-Particle physics, the Conference is entirely dedicated to the study of high energy cosmic rays and it is organized by the three public Universities of Roma (University “Roma Tre”, University “La Sapienza” and University “Tor Vergata”). These Institutions provide both theoretical and experimental contributions, and participate to major experimental projects in the field (AGILE, AMS, ANTARES, ARGO, Auger, CTA, Fermi, JEM-EUSO, KM3NeT, NEMO, PAMELA, etc.). The Conference is held every two years. The first edition was held at the University “La Sapienza”, the second edition was hosted by University “Tor Vergata”, the third by the University “Roma Tre”.

The aim of the Conference will be to present and discuss some of the most relevant theoretical and experimental results in the field of high energy cosmic rays (gamma, neutrinos, charged cosmic rays). Special attention will be paid to the multi-messenger search for high energy cosmic rays sources, including gravitational wave searches. A special session will be dedicated to Dark Matter search. The Conference will give the opportunity to collect experimental results from presently operating experiments. Experiments in progress and future projects will be discussed, debating on the different features and on sensitivities. Particular relevance will be given to the discussion of the open questions in high energy Astroparticle Physics.