Archivi tag: elio

LUNA riproduce la nucleosintesi del litio

Uno dei problemi ancora aperti dell’astrofisica riguarda la questione del litio. Infatti, la quantità di litio prevista nelle stelle non è quella che ci aspettiamo (post1; post2). Nonostante ciò, i calcoli sono esatti, così come è stato confermato per la prima volta da un esperimento recente condotto presso i Laboratori Nazionali del Gran Sasso che ha permesso di calcolare la percentuale di litio che si produce sotto certe condizioni estreme, come quelle che hanno caratterizzato, appunto, il Big Bang. Continua a leggere LUNA riproduce la nucleosintesi del litio

Pubblicità

L’isotopo più importante per l’origine della vita

E’ a tutti noto che sin dalla sua nascita, l’Universo si sta espandendo e continua ad evolversi formando strutture sempre più complesse a partire dalle particelle elementari. Oggi, un gruppo di fisici teorici hanno ottenuto nuovi indizi in merito ad una reazione nucleare che risulta di fondamentale importanza per l’origine della vita come noi la conosciamo.

Noto come processo 3-alpha, questa reazione nucleare è responsabile dell’abbondanza dell’elemento carbonio presente nell’Universo. Per diversi anni, il meccanismo fisico mediante il quale le stelle emettono luce è stato compreso attraverso un processo a due fasi. Di recente, alcuni fisici hanno rivisto questo processo per analizzare il meccanismo più da vicino dietro il quale si cela la presenza dell’isotopo più importante per la vita: il carbonio-12. In particolare, gli scienziati si sono trovati ad affrontare un problema relativo al tasso di produzione del carbonio-12 a basse temperature. I calcoli che sono stati ottenuti in precedenza dal gruppo di ricercatori guidato da Kazuyuki Ogata, un professore di fisica nucleare della Kyushu University in Fukuoka nel Giappone, indicano che le stelle evolvono così rapidamente che non riescono a raggiungere la fase di gigante rossa. Ma questo, di fatto, non è vero in quanto lo spazio è pieno di numerosissime stelle che si trovano in questa fase avanzata dell’evoluzione stellare. Dunque c’è un problema probabilmente associato ai metodi utilizzati. Sappiamo che il carbonio è il quarto elemento più abbondante nell’Universo e l’isotopo carbonio-12 è la sua forma più comune. Caratterizzato da 6 protoni e 6 neutroni, questo nucleo molto semplice rappresenta la base di tutta la vita, almeno come noi la conosciamo. Tuttavia, i processi che determinano la formazione di questo isotopo e la sua abbondanza non sono così semplici. Di fatto, una frazione di secondo dopo il Big Bang, i quark e i gluoni si unirono per formare protoni e neutroni. Appena tre minuti più tardi, apparvero i primi nuclei di idrogeno e di elio. Ma deve passare almeno un milione di anni prima che gli elettroni formino atomi neutri e circa duecento milioni di anni affinchè appaiano le prime stelle. All’interno del calderone stellare, i protoni iniziarono a combinarsi in nuclei di elio attraverso una sequenza di reazioni nucleari. Dopo, però, tali processi nucleari ebbero un periodo di arresto. Ad esempio, se aggiungiamo un singolo protone all’atomo di elio, otteniamo litio-5, un isotopo che non esiste in natura. Se due nuclei di elio fondono, si ottiene berillio-8, un altro nucleo che non esiste in accordo alle leggi della fisica nucleare. Chiaramente, le stelle continuarono la loro evoluzione, creando tutti gli elementi possibili che vediamo oggi. Ma allora la domanda è: come è possibile? Questo puzzle ha tenuto impegnati gli scienziati per diversi anni perché se non siamo in grado di spiegare l’abbondanza di carbonio-12, diventa quasi impossibile spiegare come si sia formato l’Universo. La risposta deriva dalla reazione 3-alpha che coinvolge tre nuclei di elio. Nonostante il berillio-8 decada dopo qualche nanosecondo, nel caso in cui la stella sia abbastanza calda, una terza particella alpha si fonde con questo isotopo. E dato che l’energia di un nucleo di berillio-8 sommata all’energia di una particella alpha è quasi equivalente a quella dell’isotopo di carbonio-12, si crea una risonanza del processo nucleare che causa un incremento al tasso di produzione del carbonio-12. Tuttavia, c’è un altro modo per cui le stelle sono in grado di produrre carbonio-12. A basse temperature, quando l’energia non è ancora sufficiente per dar luogo al processo di risonanza, l’isotopo carbonio-12 può essere prodotto attraverso la fusione simultanea di tre particelle alpha. Il gruppo di Kyushu è stato così in grado di ottenere previsioni teoriche più adeguate del tasso di produzione del carbonio-12 che sono in accordo con i modelli precedenti nel caso di temperature elevate. A temperature più basse, i loro risultati suggeriscono un incremento del tasso di produzione del carbonio-12 pari a circa 10 trilioni di volte maggiore rispetto alle stime precedenti. Insomma, i nuovi calcoli permettono ancora l’esistenza delle stelle giganti che sono quindi salve. Ora si spera che in futuro queste previsioni possano fornire nuovi scenari che riguardano alcuni problemi astrofisici ancora irrisolti e che riguardano le stelle novae e le supernovae.

ArXiv: Low-Temperature Triple-Alpha Rate in a Full Three-Body Nuclear Model

Dalle onde radio nuovi indizi sulla ‘prima luce’ dell’Universo

All’inizio non c’era alcuna luce, e poi fu il Big Bang! Già, di fatto il Big Bang creò il nostro Universo 13,7 miliardi di anni fa, ma subito dopo lo spazio fu dominato dall’oscurità. Dalle osservazioni della radiazione cosmica di fondo, gli astronomi hanno ipotizzato che alcune centinaia di milioni di anni dopo la nascita dell’Universo, la gravità assemblò gli atomi diidrogeno e di elio per formare le prime nubi di gas. L’energia liberatasi durante questo processo surriscaldò alla fine le nubi mettendo in moto una catena di eventi che portarono alla nascita delle prime stelle. Nonostante la transizione tra la cosiddetta “età scura” e la nascita delle prime stelle e delle prime galassie potrebbe spiegare l’origine e l’evoluzione di molti corpi celesti, tuttavia gli astronomi conoscono ancora molto poco circa questa fase dell’evoluzione cosmica.

Di recente, due astronomi hanno condotto un esperimento per cercare di capire qualcosa di più circa questo periodo di transizione, noto come epoca della reionizzazione (Epoch Of Reionization, EOR). Ora, dato che è impossibile identificare la radiazione associata alle galassie primordiali, Alan Rogers del MIT Haystack Observatory e Judd Bowmann dell’Arizona State University si sono concentrati sulla ricerca delle onde radio che sono state emesse dall’idrogeno primordiale all’epoca presente nelle nasciture galassie. Alcune onde radio stanno, di fatto, raggiungendoci oggi e perciò esse potrebbero trasportare qualche informazione relativa al periodo dell’EOR. Appena le prime stelle cominciarono a formarsi durante l’epoca EOR, la loro radiazione ultravioletta eccitò gli atomi d’idrogeno più vicini, liberando gli elettroni e dando loro una carica positiva. Questo processo, noto comeionizzazione, è importante in cosmologia dato che segna un momento fondamentale nel periodo di transizione tra l’Universo primordiale, che conteneva solo idrogeno ed elio, e l’Universo di oggi dove osserviamo pianeti, stelle e galassie. Determinare esattamente quando, e per quanto tempo, questo processo di ionizzazione sia avvenuto costituisce un passo importante per confermare o modificare gli attuali modelli sull’evoluzione dell’Universo. I dati delle analisi indicano che ci sono voluti almeno 5 milioni di anni prima che l’idrogeno diventasse un gas ionizzato. E’ una grande coincidenza il fatto che la nascita delle prime stelle e delle prime galassie abbia richiesto la stessa quantità di tempo, o forse più, per diventare successivamente i corpi celesti che vediamo oggi come stelle e galassie.