Archivi tag: elettroni

Messaggeri dell’Universo ‘invisibile’

Abbiamo detto varie volte che la materia ordinaria rappresenta quasi il 5% dell’Universo, tutto il resto è qualcosa di invisibile a cui gli scienziati hanno dato il nome di materia scura ed energia scura. Oggi, un gruppo di ricercatori che lavoreranno ad un nuovo esperimento che sarà condotto presso il Thomas Jefferson National Accelerator Facility in Virginia sperano di far luce su alcuni misteri della fisica ancora irrisolti.

Continua a leggere Messaggeri dell’Universo ‘invisibile’

L’esperimento Belle II: alla ricerca di una ‘nuova’ fisica

L’esperimento Belle è un esperimento di fisica delle particelle a cui lavorano più di 400 fisici e ingegneri nell’ambito di una collaborazione internazionale. L’obiettivo è studiare la violazione CP e i suoi effetti. L’esperimento si trova all’acceleratore KEKB, situato all’interno della High Energy Accelerator Research Organisation (KEK) in Tsukuba, Giappone.  Continua a leggere L’esperimento Belle II: alla ricerca di una ‘nuova’ fisica

Dalle nane bianche probabili indizi sulla ‘relazione’ bosone di Higgs-gravità

La scoperta del bosone di Higgs ha rappresentato un importante passo in avanti verso la comprensione del meccanismo mediante il quale le particelle acquisiscono la propria massa (post). Ora, dal momento che la massa è determinante per la gravità, la particella di Higgs potrebbe rivelarci preziosi indizi sulla natura stessa dell’interazione gravitazionale. In tal senso, è stata avanzata una ipotesi secondo la quale il campo di Higgs potrebbe accoppiarsi con una specifica curvatura dello spaziotempo, uno scenario che è stato preso in considerazione in varie estensioni del modello standard.

Continua a leggere Dalle nane bianche probabili indizi sulla ‘relazione’ bosone di Higgs-gravità

E se la velocità della luce fosse ‘apparentemente’ più bassa?

E’ quanto afferma in un articolo pubblicato sulla rivista New Journal of Physics James Franson, un fisico dell’Università del Maryland, che ha catturato subito l’attenzione della comunità scientifica. La relatività generale ci dice che la luce viaggia nel vuoto ad una velocità costante pari a 299.792.458 metri al secondo e viene indicata con il simbolo nelle famose equazioni di Einstein. Ma dove sta il problema?
Continua a leggere E se la velocità della luce fosse ‘apparentemente’ più bassa?

AMS-02, i primi risultati suggeriscono l’esistenza di un ‘oceano’ di materia scura

Il grafico illustra l’eccesso di positroni in funzione dell’energia delle particelle. I dati sono abbastanza bene descritti, anche se non confermati, dal modello che spiega la materia scura costituita dalle particelle WIMPs.
Credit: CERN

Il 29 Aprile 2011 è stata l’ultima missione dello Space Shuttle Endeavour (STS-134), la penultima del programma STS, che ha portato a bordo l’Alpha Magnetic Spectrometer (AMS), un rivelatore di particelle costruito appositamente per operare nello spazio agganciato alla Stazione Spaziale Internazionale (ISS). AMS è stato concepito per fornire le risposte ad alcune questioni fondamentali della fisica delle particelle ed in particolare allo studio dell’antimateria, della materia scura, dell’energia scura e dei raggi cosmici.

Dopo quasi due anni di osservazioni, i primi risultati, sebbene preliminari, suggeriscono che le ‘impronte digitali cosmiche’ le cui tracce sono presenti nei raggi cosmici sono il frutto dell’esistenza di materia scura, quella enigmatica e misteriosa componente di materia invisibile che caratterizza quasi il 27% del contenuto materia-energia dell’Universo (post). Naturalmente, il caso non è chiuso dato che queste prime evidenze potrebbero essere associate ad altre sorgenti di radiazione come, ad esempio, le pulsar. Il Premio Nobel Samuel Ting, che è responsabile del programma scientifico, è convinto che nei prossimi mesi avremo qualche dato più certo e che al momento non è ancora possibile risolvere questo ‘puzzle’ astrofisico. Ciò che risulta chiaro è il fatto che c’è qualcosa, in altre parole esiste un segnale evidente ma non sappiamo di che cosa si tratti. Il mistero della materia scura risale agli anni ’30 quando Fritz Zwicky ottenne le prime evidenze relative all’esistenza di un eccesso di materia invisibile negli ammassi di galassie. Da lì in poi fino ad arrivare ai più recenti esperimenti, sia con gli acceleratori di particelle che con speciali rivelatori sotterranei, non è mai stato ottenuto un risultato significativo che ci permetta di svelare il segreto della materia scura. Oggi, però, c’è un modo diverso di guardare alle rare collisioni delle particelle che avvengono nello spazio. Infatti, nel momento in cui due particelle di materia scura interagiscono e annichilano, ci si aspetta che esse lascino una sorta di “impronta” costituita da positroni, cioè le antiparticelle degli elettroni, ad elevate energie. E’ ciò che stanno cercando Ting ed il suo gruppo di ricercatori. La notizia è che sono state trovate alcune tracce interessanti ma potrebbero essere associate alle pulsar. Per capire allora a quale sorgente esse siano correlate occorrerà analizzare il grafico che riguarda il segnale emesso dai positroni: se la curva assume un determinato andamento potrebbe essere consistente con l’ipotesi delle WIMPs, che sono le particelle candidate per costituire la materia scura, altrimenti bisogna ricorrere alle pulsar. Dunque, questo comportamento potrebbe rappresentare per gli scienziati la discriminante. Infatti, una delle proprietà delle particelle WIMPs è che quando esse collidono si ha la produzione di una certa quantità di energia e la formazione di particelle subatomiche, secondo l’equazione di Einstein che esprime l’equivalenza tra la massa e l’energia (E = mc2). Questo processo è simile a quello che avviene quando un elettrone e un positrone collidono liberando una certa quantità di energia. Nel caso delle particelle WIMPs uno dei risultati del processo di autoannichilazione è proprio la creazione di elettroni e positroni. AMS-02 è stato concepito per rivelare queste particelle. I dati che sono stati raccolti dal rivelatore durante i primi 18 mesi di osservazioni si riferiscono a circa 25 miliardi di eventi rari che sono collegati ai raggi cosmici di cui circa 7 milioni sono nella forma di elettroni e positroni. Analizzando questi dati preliminari è stato trovato qualcosa di interessante: un eccesso di positroni rispetto a quanto ci si aspetta dal segnale di fondo dovuto alle sorgenti di radiazione ordinaria, già osservato da altri esperimenti ma ora misurato da AMS-02 con una precisione migliore. Tutto questo è consistente con quanto previsto nel caso in cui le particelle di materia scura siano di tipo WIMPs. Fantastico, anche se non possiamo concludere ancora nulla. Di fatto, ci potrebbero essere altre sorgenti, appunto come le pulsar, che si originano quando stelle massicce esplodono formando le stelle di neutroni in rapida rotazione. Questo processo dà luogo alla creazione di particelle di alta energia il cui segnale può assomigliare a quello dovuto alle WIMPs. Per completezza di informazione segnaliamo che c’è chi ritiene che questi risultati preliminari siano incorretti e fuorvianti (post). Comunque sia, staremo a vedere cosa accadrà nei prossimi mesi. AMS-02 continuerà ad osservare i raggi cosmici, dove si celano le tracce di questi segnali, fino al 2020. Insomma, si tratta di una storia affascinante, un giallo da risolvere che secondo Michael Turner, uno dei più grandi esperti del ‘settore scuro’ dell’Universo, potrebbe ben presto arrivare ad una conclusione.

AMS-02: First Result from the Alpha Magnetic Spectrometer Experiment

Physical Review Letters: The first results from the space-borne Alpha Magnetic Spectrometer confirm an unexplained excess of high-energy positrons in Earth-bound cosmic rays

Physical Review Letters: First Result from the Alpha Magnetic Spectrometer on the International Space Station:Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV

Una teoria ‘rivoluzionaria’ sulla materia scura

Are Raklev. Credit: Yngve Vogt

Che l’Universo sia composto da circa il 23% di materia scura ormai lo sanno tutti. Ma nessuno sa ancora di che cosa consiste questa componente enigmatica. Oggi, però, alcuni fisici dell’Università di Oslo hanno lanciato una sfida per tentare di dare una spiegazione matematica alquanto difficile che potrebbe risolvere una volta per tutte questo enigma astrofisico.

Il mistero della materia scura dura ormai da circa 80 anni e, forse, la soluzione di questo enigma potrebbe essere proprio dietro l’angolo. “Siamo alla ricerca di un nuovo membro dello zoo di particelle per spiegare la materia scura. Siamo convinti che si tratti di una particella molto esotica. E, forse, abbiamo trovato una spiegazione plausibile”, spiega Are Raklev, un professore associato di fisica delle particelle del Dipartimento di Fisica dell’Università di Oslo. Raklev ha presentato un modello che tenta di spiegare ciò che potrebbe essere la materia scura. Anche se essa è invisibile, gli scienziati sanno che esiste. Infatti, senza questa componente sarebbe impossibile spiegare la formazione delle strutture cosmiche. “Anche se siamo in grado di determinare quanta materia scura esiste nell’Universo, sappiamo ancora molto poco sulla sua vera origine e natura. Le particelle di materia scura devono essere pesanti oppure ce ne devono essere in grande quantità. Tra le varie particelle candidate i neutrini hanno tutti i requisiti giusti ma la loro massa è troppo piccola“. Il lavoro di Raklev è quello di dimostrare che la materia scura sia costituita dal gravitino, un’ipotetica particella elementare, il cui partner supersimmetrico è il gravitone, che emergerebbe dalle teorie che tentano di unificare la relatività generale e la supersimmetria. “Il gravitino è l’ipotetica particella il cui partner supersimmetrico è il gravitone, anch’esso una particella ipotetica” spiega Raklev.

Dunque, per capire meglio le ragioni per cui Raklev ritiene che la materia scura sia composta da gravitini, dobbiamo fare alcune considerazioni:

1 : Uno degli obiettivi dei fisici è quello di scoprire se la natura è supersimmetrica, cioè se esiste una simmetria tra particelle e interazioni fondamentali. Per ogni tipo di elettrone e quark corrisponde un partner supersimmetrico, più pesante. Si ritiene che le particelle supersimmetriche siano state create subito dopo il Big Bang. Se alcune di loro sono sopravvissute fino ad oggi, forse potrebbero costituire la materia scura. Il partner supersimmetrico del gravitino è il gravitone. “Un gravitone è la particella che media la forza di gravità, proprio come il fotone, la particella di luce, media la forza elettromagnetica. Mentre i gravitoni non hanno massa, i gravitini possono essere molto pesanti. Dunque se la natura è supersimmetrica e i gravitoni esistono, allora anche i gravitini devono esistere e viceversa. Questa è matematica pura”. Ma c’è un problema. I fisici non possono dimostrare la relazione tra gravitoni e gravitini prima che non siano state unificate tutte le forze della natura.

2 : Un altro obiettivo di fondamentale importanza è quello di unificare tutte le forze della natura in un’unica teoria. Verso la metà del secolo scorso i fisici scoprirono che l’elettricità e il magnetismo erano due aspetti diversi della stessa interazione che fu successivamente chiamata elettromagnetismo. Esistono poi altre due interazioni, la forza nucleare forte e la forza nucleare debole. La forza nucleare debole è associata alla radioattività. La forza nucleare forte, che è circa dieci miliardi di volte più intensa, lega insieme protoni e neutroni. Durante gli anni ’70, l’elettromagnetismo entrò nel quadro del modello standard assieme alle altre due forze, nucleare forte e nucleare deboli. La quarta forza fondamentale della natura è la gravità. Si tratta dell’interazione più debole in termini di intensità che i fisici non sono ancora in grado di unificare con le altre tre forze della natura. Oggi, i teorici sono impegnati a formulare una teoria che un giorno, si spera, permetterà di descrivere tutte le interazioni fondamentali tra le particelle elementari. I fisici chiamano questa teoria la “teoria del tutto”. “Al fine di unificare la forza gravitazionale con le altre tre forze della natura, dobbiamo descrivere la gravità su scale subatomiche. Ciò significa che abbiamo bisogno di una teoria in cui sia incluso anche il gravitone“.

Per dirla in breve, lo studio della materia scura è molto complicato e uno dei motivi principali è che essa non interagisce dal punto di vista elettromagnetico con le particelle terrestri. Abbiamo detto che una particella candidata è il neutrino. Forse, i neutrini costituiscono solo una parte infinitesimale della materia scura. Sappiamo che diversi miliardi di neutrini attraverso il nostro corpo ogni secondo. Tuttavia, la loro velocità è piuttosto limitata. Di fatto, queste particelle elusive si muovono così lentamente come la velocità con cui il Sistema Solare orbita attorno alla Via Lattea, circa 400 chilometri al secondo. “Quando non ci sono interazioni con le particelle elettromagnetiche visibili, i neutrini possono attraversare il nostro corpo senza che nessun strumento li riveli. Qui è proprio dove entra in gioco la supersimmetria. Se la teoria è corretta, allora i fisici potranno spiegare perché vi è materia scura nell’Universo. E questa è la parte divertente del mio lavoro”, afferma Raklev. “La supersimmetria semplifica tutto. Se un giorno sarà possibile unificare le quattro forze della natura, allora i gravitini dovranno far parte dello zoo delle particelle“. I gravitini si sarebbero formati subito dopo il Big Bang. “Subito dopo il Big Bang si è originata una ‘zuppa di particelle’ che erano continuamente in collisione. I gluoni, le particelle che mediano la forza nucleare forte, entrarono in collisione con altri gluoni per produrre gravitini. Perciò molti gravitini si sarebbero formati dopo il Big Bang mentre l’Universo si trovava ancora in uno stato di plasma. Dunque abbiamo una spiegazione del perché esistono i gravitini“.

Tuttavia, i fisici hanno visto i gravitini come un problema teorico. Essi ritengono che la teoria della supersimmetria non funziona perché ci sono troppi gravitini. “I fisici hanno quindi cercato di eliminare i gravitini dai loro modelli. Noi, invece, abbiamo trovato una nuova spiegazione che unifica la supersimmetria con la materia scura costituita di gravitini. Se la materia scura non è stabile, ma esiste da lungo tempo, c’è un modo di spiegare perchè la materia scura consista di gravitini“. Negli altri modelli, la materia scura viene considerata sempre eterna. Questo significa che i gravitini rappresentano una parte problematica della supersimmetria. Nel modello di Raklev, i gravitini non durano in eterno e la loro vita media è molto lunga, addirittura più lunga dell’età dell’Universo. Tuttavia, vi è una notevole differenza tra una vita senza fine e una età superiore a 14 miliardi di anni. Se il tempo di vita è lungo ma limitato, i gravitini possono trasformarsi in altre particelle. È proprio questo effetto di trasformazione che può essere misurato per  spiegare così il modello. “Noi siamo convinti che quasi tutta la materia scura sia composta da gravitini e la spiegazione di ciò si basa su una formulazione matematica molto complessa. Stiamo sviluppando modelli speciali che consentano di prevedere in che modo queste particelle possano essere osservate negli esperimenti“.

I ricercatori stanno cercando di verificare sperimentalmente l’esistenza di queste particelle ed è questo il motivo per cui i gravitini non stati ancora rivelati al CERN. “Forse, potrebbero essere osservati nello spazio“, spiega Raklev. Il modo più semplice per rivelare i gravitini potrebbe essere quello di studiare cosa succede quando due particelle collidono nell’Universo e vengono trasformate in altre particelle sottoforma di fotoni o antimateria. Anche se le collisioni avvengono molto raramente, c’è ancora tanta materia scura nello spazio per cui ci aspettiamo che venga prodotto un numero significativo di fotoni. Il problema principale è che i gravitini non interagiscono. Ma c’è una speranza. “Fortunatamente per noi, i gravitini non sono al cento per cento stabili. Ad un certo punto, essi vengono trasformati in qualcosa d’altro. Oggi siamo in grado di prevedere come può apparire il segnale una volta che i gravitini siano stati trasformati in altre particelle. Questo processo di conversione causerà l’emissione di un’onda elettromagnetica, cioè raggi gamma“. Attualmente, il telescopio spaziale Fermi sta misurando i raggi gamma associati alle sorgenti di alta energia. “Finora abbiamo visto solo il rumore. Ma alcuni ricercatori affermano di aver osservato un piccolo eccesso  di raggi gamma sospetto proveniente dal centro della nostra galassia. Forse, i loro dati potrebbero descrivere bene il nostro modello”, conclude Raklev.

University of Oslo press release: Revolutionary theory of dark matter

arXiv: Cosmic Ray Signatures from Decaying Gravitino Dark Matter

arXiv: Photon, Neutrino and Charged Particle Spectra from R-violating Gravitino Decays

arXiv: Constraining the MSSM with Dark Matter indirect detection data

arXiv: Massive Metastable Charged (S)Particles at the LHC

arXiv: Physics Beyond the Standard Model: Supersymmetry

L’isotopo più importante per l’origine della vita

E’ a tutti noto che sin dalla sua nascita, l’Universo si sta espandendo e continua ad evolversi formando strutture sempre più complesse a partire dalle particelle elementari. Oggi, un gruppo di fisici teorici hanno ottenuto nuovi indizi in merito ad una reazione nucleare che risulta di fondamentale importanza per l’origine della vita come noi la conosciamo.

Noto come processo 3-alpha, questa reazione nucleare è responsabile dell’abbondanza dell’elemento carbonio presente nell’Universo. Per diversi anni, il meccanismo fisico mediante il quale le stelle emettono luce è stato compreso attraverso un processo a due fasi. Di recente, alcuni fisici hanno rivisto questo processo per analizzare il meccanismo più da vicino dietro il quale si cela la presenza dell’isotopo più importante per la vita: il carbonio-12. In particolare, gli scienziati si sono trovati ad affrontare un problema relativo al tasso di produzione del carbonio-12 a basse temperature. I calcoli che sono stati ottenuti in precedenza dal gruppo di ricercatori guidato da Kazuyuki Ogata, un professore di fisica nucleare della Kyushu University in Fukuoka nel Giappone, indicano che le stelle evolvono così rapidamente che non riescono a raggiungere la fase di gigante rossa. Ma questo, di fatto, non è vero in quanto lo spazio è pieno di numerosissime stelle che si trovano in questa fase avanzata dell’evoluzione stellare. Dunque c’è un problema probabilmente associato ai metodi utilizzati. Sappiamo che il carbonio è il quarto elemento più abbondante nell’Universo e l’isotopo carbonio-12 è la sua forma più comune. Caratterizzato da 6 protoni e 6 neutroni, questo nucleo molto semplice rappresenta la base di tutta la vita, almeno come noi la conosciamo. Tuttavia, i processi che determinano la formazione di questo isotopo e la sua abbondanza non sono così semplici. Di fatto, una frazione di secondo dopo il Big Bang, i quark e i gluoni si unirono per formare protoni e neutroni. Appena tre minuti più tardi, apparvero i primi nuclei di idrogeno e di elio. Ma deve passare almeno un milione di anni prima che gli elettroni formino atomi neutri e circa duecento milioni di anni affinchè appaiano le prime stelle. All’interno del calderone stellare, i protoni iniziarono a combinarsi in nuclei di elio attraverso una sequenza di reazioni nucleari. Dopo, però, tali processi nucleari ebbero un periodo di arresto. Ad esempio, se aggiungiamo un singolo protone all’atomo di elio, otteniamo litio-5, un isotopo che non esiste in natura. Se due nuclei di elio fondono, si ottiene berillio-8, un altro nucleo che non esiste in accordo alle leggi della fisica nucleare. Chiaramente, le stelle continuarono la loro evoluzione, creando tutti gli elementi possibili che vediamo oggi. Ma allora la domanda è: come è possibile? Questo puzzle ha tenuto impegnati gli scienziati per diversi anni perché se non siamo in grado di spiegare l’abbondanza di carbonio-12, diventa quasi impossibile spiegare come si sia formato l’Universo. La risposta deriva dalla reazione 3-alpha che coinvolge tre nuclei di elio. Nonostante il berillio-8 decada dopo qualche nanosecondo, nel caso in cui la stella sia abbastanza calda, una terza particella alpha si fonde con questo isotopo. E dato che l’energia di un nucleo di berillio-8 sommata all’energia di una particella alpha è quasi equivalente a quella dell’isotopo di carbonio-12, si crea una risonanza del processo nucleare che causa un incremento al tasso di produzione del carbonio-12. Tuttavia, c’è un altro modo per cui le stelle sono in grado di produrre carbonio-12. A basse temperature, quando l’energia non è ancora sufficiente per dar luogo al processo di risonanza, l’isotopo carbonio-12 può essere prodotto attraverso la fusione simultanea di tre particelle alpha. Il gruppo di Kyushu è stato così in grado di ottenere previsioni teoriche più adeguate del tasso di produzione del carbonio-12 che sono in accordo con i modelli precedenti nel caso di temperature elevate. A temperature più basse, i loro risultati suggeriscono un incremento del tasso di produzione del carbonio-12 pari a circa 10 trilioni di volte maggiore rispetto alle stime precedenti. Insomma, i nuovi calcoli permettono ancora l’esistenza delle stelle giganti che sono quindi salve. Ora si spera che in futuro queste previsioni possano fornire nuovi scenari che riguardano alcuni problemi astrofisici ancora irrisolti e che riguardano le stelle novae e le supernovae.

ArXiv: Low-Temperature Triple-Alpha Rate in a Full Three-Body Nuclear Model

Una radiazione ‘insolita’ dal centro della Via Lattea

L’Universo è composto essenzialmente di materia invisibile, l’enigmatica materia scura che rappresenta oltre l’80% della materia presente nello spazio, distribuita tra le galassie e tra le stelle che formano una galassia. Da oltre 70 anni, gli scienziati stanno tentando di capire la sua vera natura e svelare così i suoi segreti ma oggi, grazie alla missione del satellite Planck, alcuni ricercatori del Niels Bohr Institute potrebbero essere vicini alla soluzione del mistero.

Il satellite Planck, che fu lanciato nel 2009, è dotato di strumenti estremamente sensibili che sono in grado di mappare con una precisione elevata la radiazione cosmica di fondo. Gli ultimi dati hanno messo in evidenza la presenza di una radiazione insolita associata alle regioni centrali della nostra galassia che apre una nuova finestra verso la comprensione delle proprietà fondamentali dello spazio, del tempo e della materia. “Abbiamo osservato una emissione radio unica proveniente dal centro della Via Lattea. Utilizzando metodi diversi per separare il segnale nelle varie bande dello spettro elettromagnetico, siamo stati in grado di derivare lo spettro della radiazione. La radiazione è di tipo sincrotrone, cioè protoni ed elettroni che vengono accelerati dalle linee di forza del campo magnetico galattico, e ci sono forti indicazioni che potrebbe essere associata alla materia scura” spiega Pavel Naselsky, professore di cosmologia presso il Discovery Center dell’Istituto Niels Bohr dell’Università di Copenhagen. Alcuni scienziati, come il professor Subir Sarkar hanno calcolato che la materia scura potrebbe essere costituita da particelle molto pesanti, almeno 10 volte più pesanti rispetto alla massa del bosone di Higgs, cioè 1000 volte più pesante di un protone. Queste particelle hanno proprietà uniche e non interagiscono con le particelle che formano la materia ordinaria, non solo ma le particelle della materia scura non interagiscono nemmeno tra loro. “Sappiamo, in via teorica, che la concentrazione di particelle candidate per costituire la materia scura attorno ai nuclei delle galassie è molto elevata, perciò siamo certi che lì possono collidere dando luogo alla produzione di protoni ed elettroni. Queste ultime particelle iniziano a ruotare attorno alle linee di forza del campo magnetico galattico e così facendo producono questa insolita radiazione di sincrotrone”. E’ stato impossibile osservarla prima dato che gli strumenti che avevamo a disposizione non erano così sensibili e ora, grazie a Planck, siamo stati in grado di osservare questa enorme ed insolita radiazione di sincrotrone. C’è da dire, infine, che questa radiazione non può essere interpretata in termini di particolari meccanismi nel centro della galassia né da esplosioni di supernovae. “Forse si tratta di una prova dell’esistenza di materia scura altrimenti avremmo scoperto un nuovo e sconosciuto meccanismo di accelerazione di particelle nel centro della galassia”  conclude Naselsky.

ArXiv: Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

L’origine della massa ‘visibile’: la connessione quark-gluoni

Dopo i recenti fatti accaduti al CERN e quello che hanno scritto i media e i blog scientifici possiamo senz’altro affermare che sappiamo ormai tutto su come si origina la massa delle particelle. Infatti, i fisici che lavorano agli esperimenti di LHC hanno presentato i risultati degli esperimenti degli ultimi due anni che suggeriscono l’esistenza di una particella che ha tutte le caratteristiche consistenti con il bosone di Higgs, responsabile del meccanismo che dà origine alla massa (vedasi questo post). Ora, mentre il bosone di Higgs può essere responsabile della massa di alcune particelle fondamentali, i quark presi da soli non tengono conto della maggior parte della materia visibile nell’Universo.

Per capire cosa tiene insieme queste forme visibili della materia, dalle stelle ai pianeti fino agli esseri umani, dobbiamo capire come interagiscono i quark e i gluoni. Si tratta del tema principale che è stato di recente presentato al congresso Quark Matter 2012. “Stiamo studiando il 99% della massa visibile nell’Universo e che non è spiegata dal bosone di Higgs” spiega Peter Steinberg del Department of Energy’s presso il Brookhaven National Laboratory. La materia visibile è composta da atomi la cui massa deriva dai protoni e dai neutroni che costituiscono il nucleo atomico. Gli elettroni che orbitano attorno al nucleo non contribuiscono praticamente a nulla. I protoni assieme ai neutroni sono composti da una tripletta di quark e sono molto più massicci rispetto alla somma delle masse dei singoli costituenti. Ma allora da dove proviene tutto questo eccesso di massa? I fisici credono che la risposta sia data dal modo con cui i quark interagiscono attraverso i gluoni, particelle senza massa che tengono insieme i quark attraverso la forza nucleare forte. Per capirne di più, i fisici devono creare le condizioni estreme che erano presenti durante le fasi iniziali della storia dell’Universo attraverso la collisione di particelle ad alta energia in modo da osservare i quark allo stato libero prima che essi possano unirsi per formare protoni e neutroni. Studiare così il comportamento dei quark “liberi” e dei gluoni nel cosiddetto plasma quark-gluoni permette agli scienziati di avere maggiori informazioni sulla natura della forza nucleare forte e come essa genera gran parte della massa che noi vediamo nel momento in cui le particelle si uniscono per formare la materia ordinaria. Dunque, mentre la materia visibile tiene conto solo di una mera frazione della massa totale dell’Universo, appena il 4%, il resto, composto essenzialmente da materia scura e da energia scura, è già abbastanza per tenere impegnati i fisici nella loro ricerca verso la comprensione dei due più grandi enigmi della moderna cosmologia (vedasi Enigmi Astrofisici).

Maggiori info: Highlights of key findings presented at Quark Matter 2012

LEP3, guardando oltre il grande collisore di adroni

La figura illustra il progetto LEP3 con il doppio anello di acceleratori: un primo anello (accelerator ring) accelera elettroni e positroni fino ad energie di 120 GeV per poi immetterli con intervalli di qualche minuto nell’altro anello (collider ring) che è dotato di punti d’interazione ad elevata luminosità.

Nonostante gli ultimi clamorosi risultati ottenuti dal Large Hadron Collider (LHC), un gruppo di fisici sta guardando oltre l’utilità che può dare nei prossimi anni il grande collisore di adroni. Si tratta di un progetto scientifico che vedrà la costruzione di un nuovo acceleratore di particelle, denominato LEP3, che dovrebbe essere collocato nel tunnel attualmente occupato da LHC, una versione aggiornata, per così dire, di quello che qualche tempo fa era il Large Electron-Positron Collider (LEP). Il gruppo di fisici coinvolti in questo progetto dichiarano che il nuovo collisore sarà utilizzato per studiare essenzialmente il bosone di Higgs.

Oggi, una delle domande fondamentali che si pongono i fisici è quella di capire quale sarà il passo successivo una volta che LHC avrà dato, si spera, la prova definitiva dell’esistenza del bosone di Higgs. Certamente si tratta di un programma a lungo termine che dovrebbe vedere la sua realizzazione a partire dal 2030 dato che occorreranno anni per progettare e costruire un tale complesso acceleratore di particelle. Nonostante ciò, i fisici sono già pronti per la fase successiva. Intanto, bisogna dire che tutti concordano sul fatto che LHC sarà soggetto ad una serie di manutenzioni nel corso dei prossimi dieci anni al fine di incrementare l’energia e la luminosità dei fasci di collisione. Poi bisognerà vedere cosa intendono fare gli scienziati in termini di nuovi esperimenti. Se, ad esempio, saranno trovate evidenze dell’esistenza delle superparticelle, cioè le particelle previste dalla supersimmetria, quasi sicuramente i fisici vorranno approfondire gli studi in questo campo mettendo, forse, a rischio gli esperimenti che saranno focalizzati quasi esclusivamente sul bosone di Higgs e a cui potrebbe dedicarsi, appunto, LEP3. Per non parlare poi di altri progetti quali l’International Linear Collider (ILC) o il Compact Linear Collider (CLIC) che potrebbero dedicarsi alla ricerca di altre particelle anche se con un costo decisamente superiore. Una differenza sostanziale tra LHC e LEP3 è data dal tipo di particelle che vengono fatte collidere. Mentre in LHC si fanno scontrare fasci di protoni, per LEP3 sono previste collisioni tra fasci di elettroni e positroni. Inoltre, LEP3 sarà dotato di due anelli di acceleratori anzichè uno come nel caso di LHC. Insomma, i fisici sperano che con l’attuale tecnologia LEP3 possa essere realizzato in circa dieci anni e che potrà coesistere con LHC almeno per qualche anno.

ArXiv: LEP3: A HIGH LUMINOSITY E+E- COLLIDER TO STUDY THE HIGGS BOSON