Archivi tag: costante cosmologica

La costante cosmologica, il ‘più grande abbaglio’ della fisica?

Che cos’è in definitiva la costante cosmologica? E’ uno dei puzzle a cui stanno tentando di dare una risposta i cosmologi. Oggi, uno studio recente potrebbe fornire una nuova spiegazione che deriva dai concetti della gravità quantistica.

I cosmologi moderni ritengono che la costante cosmologica, introdotta da Einstein nelle equazioni della relatività generale per controbilanciare l’espansione dell’Universo, sia “la peggiore predizione della fisica”. Di fatto, quando si tenta di determinare il suo valore, i calcoli danno un valore di circa 120 ordini di grandezza superiore rispetto al valore stimato. Come mai esiste questa enorme discrepanza? (vedasi Idee sull’Universo per un maggiore approfondimento su questo tema). Oggi, un gruppo di fisici stanno considerando un nuovo modo di guardare alla costante cosmologica Λ che si ritiene guidi, per così dire, l’espansione accelerata dell’Universo. Se da un lato essa viene di solito interpretata in termini di energia del vuoto, secondo questa nuova interpretazione si ritiene che la costante cosmologica emerga da una descrizione quantistica della gravità su scale microscopiche, un obiettivo che, però, rimane ancora al di là delle nostre attuali conoscenze scientifiche.

arXiv: Cosmological Constant: A Lesson from Bose-Einstein Condensates

I sette ‘punti chiave’ del nostro Universo

Sin da quando si è originato circa 13,7 miliardi di anni fa, l’Universo continua ad affascinare e a rendere perplessi, allo stesso tempo, gli astronomi. Qui di seguito, vengono discussi alcuni punti sorprendenti e interessanti che caratterizzano il nostro Universo.


Credit: NASA / WMAP Science Team

Secondo le attuali osservazioni e misure effettuate con tecniche alquanto sofisticate, l’Universo emerse da una grande esplosione iniziale, il Big Bang, e ha una età di 13,7 miliardi di anni, con una incertezza di più o meno 130 milioni di anni. Gli astronomi hanno ricavato questo dato misurando la composizione della densità della materia e dell’energia che hanno permesso di determinare quanto rapidamente l’Universo si è espanso nel passato. In questo modo, gli scienziati sono risaliti all’epoca iniziale e hanno potuto calcolare il momento in cui è avvenuto il Big Bang. Il tempo trascorso tra l’esplosione iniziale fino ad oggi rappresenta l’età dell’Universo.


2.L’Universo sta diventando sempre più grande

Verso la fine degli anni ’20, Edwin Hubble fece una scoperta rivoluzionaria: egli trovò che lo spazio non è statico, ma si espande. Nonostante ciò, si pensava che con il passare del tempo la gravità dovuta alla materia presente nell’Universo avesse arrestato l’espansione al punto da causare una contrazione. Ma nel 1998, il telescopio spaziale Hubble permise di ottenere i primi dati sulle supernovae distanti trovando che, molto tempo fa, il tasso di espansione dell’Universo era molto più lento rispetto a quello di oggi. Questa sorprendente scoperta suggerì che doveva esistere una enigmatica forza, chiamata poi energia scura, che sta determinando una accelerazione al tasso di espansione dell’Universo. Mentre si ritiene che l’energia scura sia la causa che sta facendo allontanare le galassie le une dalle altre creando sempre più spazi vuoti, essa rimane comunque il mistero più profondo della cosmologia moderna.


3.L’espansione dell’Universo sta accelerando

Nel 1998, due gruppi di ricercatori annunciarono che non solo l’Universo è in espansione ma che sta accelerando e la causa principale è dovuta ad una enigmatica energia (scura) che permea tutto lo spazio allontanando sempre più le galassie le une dalle altre. L’espansione dell’Universo è in accordo con le equazioni della relatività generale di Einstein e, di recente, gli scienziati hanno ripreso il famoso concetto della costante cosmologica per spiegare questa strana forma di energia che sembra controbilanciare la gravità e causare l’espansione dello spazio ad un ritmo accelerato. Adam Riess, Brian Schmidt e Saul Perlmutter hanno vinto nel 2011 il Premio Nobel per la Fisica per avere scoperto indipendentemente, nel 1998, l’espansione accelerata dell’Universo.


4.La geometria dello spazio potrebbe essere euclidea

Credit: NASA / WMAP Science Team

La forma dell’Universo è influenzata dalla ‘battaglia cosmica’ tra la gravità, dovuta alla densità della materia, e il tasso di espansione dello spazio. Se la densità dell’Universo supera un certo valore critico, allora si dice che l’Universo è “chiuso”, come la superficie di una sfera. Ciò implica che l’Universo non è infinito e che non ha una fine. In questo caso, l’Universo arresterà alla fine la sua espansione ed inizierà a collassare su se stesso in un evento noto come Big Crunch. Se la densità dell’Universo è meno di quella critica, allora la forma geometrica dello spazio si dice “aperta”, come la superficie di una sella. In questo caso, l’Universo non ha confini o bordi e continuerà ad espandersi per sempre. Se poi la densità dell’Universo è esattamente pari a quella critica, allora la forma dello spazio sarà “piatta”, come la superficie di un foglio. In questa situazione, l’Universo non ha bordi o confini e si espanderà per sempre anche se il tasso di espansione si avvicinerà gradualmente allo zero dopo un quantità infinita di tempo. Misure recenti, eseguite dal satellite WMAP, suggeriscono che la geometria dello spazio è euclidea, cioè lo spazio è piatto, con un margine d’errore pari al 2 percento.


5.L’Universo è permeato da una sostanza invisibile

L’Universo è fatto di qualcosa che non vediamo. Di fatto, i pianeti, le stelle, le galassie costituiscono appena il 4 percento di ciò di cui è fatto l’Universo. L’altro 96 percento è rappresentato da qualcosa che gli astronomi non sono in grado ancora di comprendere e a cui essi hanno dato i termini di materia scura ed energia scura, i due misteri più profondi della moderna cosmologia. Nel caso della materia scura, la sua esistenza si basa sull’influenza gravitazionale che essa esercita sulla materia ordinaria.


6.L’Universo contiene l’eco della sua nascita

Simulazione della radiazione cosmica di fondo misurata dal satellite Planck.
Credit: ESA/Planck

La radiazione cosmica di fondo è fatta di echi di luce che sono emersi dall’esplosione iniziale che ha dato origine all’Universo, in seguito al Big Bang, circa 13,7 miliardi di anni fa. Oggi, essa permea l’intero spazio come una sorta di ‘velo di radiazione’. Attualmente, la missione del satellite Planck sta mappando il cielo nella banda delle microonde al fine di rivelare nuovi indizi su come si è originato l’Universo. Le osservazioni effettuate da Planck sono le più precise mai realizzate e perciò gli scienziati sperano di utilizzare i suoi dati in modo da definire alcuni punti ancora oscuri della cosmologia, come ad esempio capire meglio ciò che accadde immediatamente dopo il Big Bang all’Universo delle origini.


7.L’ipotesi degli universi multipli

Le ‘tracce’ lasciate dalle collisioni che sarebbero avvenute tra ‘bolle cosmiche’. Nell’immagine (in alto a sinistra) una collisione provoca una modulazione di temperatura nella radiazione cosmica di fondo (in alto a destra). La risposta alla collisione dovuta al “blob” è identificata in basso a sinistra le cui modulazioni nella radiazione cosmica di fondo sono simulate dall’algoritmo di calcolo nell’immagine in basso a destra.
Credit: S. M. Feeney

L’idea che viviamo in un multiverso, di cui il nostro Universo è uno dei tanti, proviene da una teoria chiamata “inflazione eterna”. Questa teoria suggerisce che subito dopo il Big Bang, lo spaziotempo si espanse in modi e in regioni diverse. Secondo la teoria, ciò diede luogo alla formazione di una serie di “universi-bolla” ognuno dei quali caratterizzati da proprie leggi fisiche (post). Tuttavia, questo concetto è ancora controverso ed è rimasto solamente teorico fino alla pubblicazione di studi recenti che tentano di fornire dei metodi per rivelare la presenza di eventuali universi vicini o paralleli. Infatti, alcuni scienziati hanno tentato di analizzare in maniera approfondita e dettagliata la radiazione cosmica di fondo alla ricerca di quelle “tracce” o “segni” che possano essere ricondotti ad ipotetiche collisioni tra due universi paralleli (post). Finora, però, non state trovate chiare evidenze che possano essere associate a tali eventi. In linea di principio, se due universi vicini venissero ad una collisione essi dovrebbero lasciare una serie di ‘tracce circolari’ rivelabili nella radiazione cosmica di fondo.


Per maggiori approfondimenti: Idee sull'Universo e Enigmi Astrofisici

Energia scura, una entità fisica statica o dinamica?

L’energia scura rappresenta il 73% del contenuto materia-energia dell’Universo e nonostante gli scienziati ritengono che essa spieghi l’espansione accelerata dello spazio, le sue proprietà fisiche rimangono ancora un enigma (vedasi Enigmi Astrofisici). Oggi, però, alcuni ricercatori ipotizzano che l’energia scura possa manifestarsi in due forme: o come costante cosmologica statica, che rimane cioè omogenea nello spazio e nel tempo, oppure come una entità fisica dinamica la cui densità di energia varia nello spazio e nel tempo. Grazie ad una serie di analisi di dati raccolti da diversi esperimenti, è stato pubblicato un nuovo studio nel quale viene presentato un modello che sembrerebbe favorire la seconda ipotesi e cioè che l’energia scura sia una entità dinamica.

arXiv: Examining the evidence for dynamical dark energy

L’ipotesi delle ‘bolle cosmiche’ secondo George Ellis

Una delle priorità della moderna cosmologia è lo studio dell’energia scura, quella misteriosa forza che sta determinando una espansione accelerata dell’Universo e di cui gli astronomi ignorano ancora la sua natura. Sebbene siano state avanzate varie ipotesi sulla sua origine, di recente il cosmologo George Ellis, dell’Università di Cape Town, ha proposto uno scenario alternativo secondo il quale l’energia scura sarebbe solo un falso effetto dovuto semplicemente alla nostra speciale posizione che occupiamo all’interno di un gigantesco vuoto cosmico, detto anche ‘bolla cosmica’.

Cominciamo prima a vedere le varie ipotesi che sono state avanzate sull’energia scura. La prima risale al 1917 quando Albert Einstein, per evitare il collasso gravitazionale del suo Universo, aveva introdotto nelle equazioni della relatività generale una proprietà dello spazio aggiungendo un termine, chiamato costante cosmologica, che avrebbe stabilizzato l’effetto della gravità mediante l’azione di una forza repulsiva, una sorta di forza antigravitazionale, che agisse su larga scala permeando tutto lo spazio cosmico. Una seconda ipotesi deriva dalla natura quantistica dello spazio quando consideriamo le scale subatomiche. Qui gli effetti quantistici diventano significativi e può succedere che coppie virtuali di particelle-antiparticelle emergano spontaneamente dal vuoto, esistono per un brevissimo intervallo di tempo e poi scompaiono rapidamente. Questo ci dice che lo spazio vuoto non è effettivamente vuoto. Ora, dato che queste particelle virtuali possono riempire lo spazio con una quantità di energia diversa da zero, si è trovato che tutte le misure e le stime della quantità di energia dello spazio vuoto portano a valori decisamente assurdi che vanno da 55 a 120 ordini di grandezza maggiori dell’energia associata a tutta la materia e alla radiazione presenti nell’Universo osservabile. Ciò implica che se l’energia del vuoto avesse realmente quei valori, tutta la materia presente nell’Universo si disperderebbe istantaneamente. Quale effetto avrebbe una tale costante cosmologica? Se veramente il valore della costante cosmologica fosse davvero grande come previsto dalla teoria dei quanti, lo spazio si espanderebbe così rapidamente che la luce dovuta, ad esempio, ai fotoni che provengono dalla mano non raggiungerebbe mai i nostri occhi. Insomma, una accelerazione di proporzioni epiche potrebbe distruggere qualsiasi cosa, dagli atomi alle galassie, e la fine dell’Universo sarebbe quella di un colossale Big Rip. Un terzo aspetto è stato analizzato da Paul Dirac. Egli riteneva che certe quantità fisiche avrebbero potuto variare con il passare del tempo ed essere perciò o troppo grandi o troppo piccole se misurate oggi. La costante cosmologica potrebbe essere un esempio di questa variabilità temporale, in altre parole potrebbe non essere una costante. Per descrivere questa forma di energia variabile nel tempo, Robert CaldwellRahul Dave Paul Steinhardt hanno introdotto il termine quintessenza, ossia “quinto elemento” dall’idea che avevano gli antichi filosofi greci secondo i quali l’Universo era composto da quattro elementi, aria, acqua, terra e fuoco, più una sostanza effimera che impediva alla Luna e ai pianeti di cadere al centro della sfera celeste. Ma per i cosmologi moderni, il termine quintessenza si riferisce ad un campo quantistico dinamico che causa una repulsione gravitazionale. Secondo questa ipotesi, la costante cosmologica evolve nel tempo e si aggiusta, per così dire, fino ad assumere il valore che possiede oggi, determinando una sorta di “stiramento” dello spaziotempo, come quando un elastico viene appunto tirato, e un aumento di volume dello spazio causando una accelerazione all’espansione dell’Universo che prevale quindi a discapito del campo gravitazionale dovuto alla materia. Ma forse l’energia scura non esiste affatto e quello che misuriamo è solo un effetto locale dovuto al fatto che la nostra posizione nella Galassia si trova in una regione particolare dello spazio. E’ ciò che ha proposto George Ellis secondo il quale ci troviamo in una sorta di “bolla cosmica”, ossia un gigantesco vuoto cosmico dove la densità di materia ivi presente è mediamente inferiore rispetto allo spazio circostante. Ora dato che l’Universo si espande in funzione della quantità di materia che, a sua volta, determina un effetto di attrazione gravitazionale frenando l’espansione dello spazio, si ha che più è vuota una regione dello spazio e meno materia esso contiene per rallentare l’espansione. Dunque il tasso di espansione locale dell’Universo diventerà maggiore che altrove e diminuirà in prossimità dei bordi della bolla dove gli effetti della densità di materia diventano più significativi. Quindi, certe regioni dello spazio si espanderanno con velocità diverse così come succede ai palloncini delle feste che non si gonfiano in maniera uniforme. Sebbene questa ipotesi sia alquanto intrigante, tuttavia alcuni scienziati sembrano scettici in merito all’esistenza di giganteschi vuoti cosmici poiché non si spiegherebbe, per esempio, l’uniformità della radiazione cosmica di fondo per non parlare poi della distribuzione apparentemente uniforme delle galassie. Nel primo caso, affinché la radiazione cosmica sia compatibile con la presenza di una regione vuota, dovremmo assumere un vuoto cosmico sferico e con la Terra al suo centro. Nel secondo caso, invece, le osservazioni con gli attuali strumenti non sono abbastanza profonde da confermare, definitivamente o meno, l’esistenza di un vuoto di dimensioni tali da produrre gli effetti attribuiti all’energia scura. Dunque si spera che i prossimi dati del satellite Planck ci forniranno dei limiti più forti sull’anisotropia della radiazione cosmica di fondo che serviranno per verificare l’esistenza di eventuali bolle cosmiche.

Maggiori info: Idee sull’Universo

Il telescopio del Polo Sud ‘sostiene’ la costante cosmologica

L’analisi dei dati raccolti con il telescopio di 10m del Polo Sud (SPT) sembra favorire l’ipotesi della costante cosmologica come la spiegazione più semplice al mistero dell’energia scura, una idea che lo stesso Einstein considerò il suo più grande errore (vedasi Idee sull’Universo). I risultati delle osservazioni riguardano anche la massa dei neutrini, quelle particelle elusive e più abbondanti che esistono nell’Universo e che fino a qualche tempo fa si riteneva non avessero massa. I dati supportano il modello dell’energia scura che si basa sull’ipotesi della costante cosmologica nonostante SPT abbia osservato una piccola frazione di cielo e solo 100 degli oltre 500 ammassi di galassie che sono stati finora considerati. Gli scienziati sperano, comunque, che nel momento in cui sarà disponibile l’insieme totale dei dati ottenuti dalla survey si potranno porre dei limiti più stringenti sull’energia scura e possibilmente determinare con più precisione la massa dei neutrini.

Il mistero della massa mancante secondo Lawrence Krauss

Il libro che voglio segnalare oggi è Il mistero della massa mancante nell’Universo di Lawrence Krauss, edito da Raffaello Cortina. Il termine massa mancante risale agli anni ’30 quando l’astronomo svizzero Fritz Zwicky, eseguendo una serie di osservazioni al telescopio su alcune classi di galassie nell’ammasso di Coma, aveva notato che, oltre alle stelle, ci doveva essere qualcosa in più che non era possibile rivelare e che fosse tale da determinare una maggiore attrazione gravitazionale sulle galassie vicine. Ma negli anni ’70, Ostriker e Peebles rielaborarono i dati di Fritz Zwicky e ottennero risultati più consistenti se veniva introdotta una quantità di materia extra almeno 10 volte maggiore di quella prevista dall’astronomo svizzero. Nel 1974, essi pubblicarono un articolo dove affermavano, in definitiva, che la struttura delle galassie non poteva essere descritta senza tener conto della materia scura.

Sebbene la comunità scientifica non era preparata ad accogliere i risultati di Ostriker e Peebles, le idee cambiarono ben presto grazie all’importante lavoro eseguito negli anni successivi da Vera Rubin . Oggi sappiamo che non è tutto ciò che brilla nella luce che caratterizza il contenuto di materia presente nell’Universo piuttosto ciò che si nasconde nell’oscurità. Uno dei grandi misteri della cosmologia moderna è proprio quello di studiare e di individuare la materia mancante che rappresenta quasi il 96% di tutto ciò di cui è fatto l’intero Universo. Nel libro, Krauss abbraccia gli ultimi risultati sulle supernovae distanti e le problematiche relative all’esistenza di una costante cosmologica per l’elaborazione di un “nuovo modello cosmologico standard”. Un’altra questione riguarda il fatto che assumiamo l’Universo omogeneo ma quando osserviamo la distribuzione della materia visibile, cioè la materia ordinaria, notiamo che è fortemente concentrata per formare delle strutture che osserviamo come galassie  o ammassi di galassie  che si ritiene siano distribuite su una sorta di scheletro formato da materia scura che permea tutto lo spazio. Krauss spiega bene il problema della materia scura e discute criticamente alcuni risultati sperimentali mostrando che il suo modello è in grado di tener conto di princìpi fisici comprensibili. La ricerca di materia scura nell’Universo è attualmente una priorità della moderna cosmologia e Krauss ci apre una porta ad un problema alquanto curioso e affascinante, tutt’altro che risolto.

Alla ricerca della vita in altri universi

Da oltre cinquant’anni una delle domandi più affascinanti a cui gli astronomi cercano di rispondere riguarda il fatto se siamo soli nell’Universo, se c’è qualcuno lì fuori che attende di essere trovato. In alcuni precedenti post ho parlato del programma SETI e di pianeti extrasolari intendendo la ricerca della vita nell’Universo come noi la conosciamo, o meno, sia in termini dell’esistenza di civiltà intelligenti che di forme di vita più elementari. Ma oggi ci spingiamo oltre e ci chiediamo se questo problema si possa estendere al di fuori dell’Universo in cui viviamo, cioè se ha senso domandarsi che la vita può esistere, in qualche modo, in altri universi.

La necessità di rispondere a questa domanda nasce dal problema di capire il significato più intrinseco della costante cosmologica per cui alcuni scienziati, come Steven Weinberg e Martin Rees, hanno preso in considerazione il cosiddetto principio antropico. Infatti, se assumiamo che il nostro Universo è uno dei tanti infiniti multiversi che sono disconnessi dal nostro, ognuno dei quali è caratterizzato da proprie costanti della natura e dove l’energia del vuoto assume valori diversi, ci si chiede quale dovrebbe essere il valore della costante cosmologica affinchè in uno dei tanti universi evolva la vita. Di recente, Alejandro Jenkins ,dell’Università Statale della Florida, e Gilad Perez, del Weizmann Institute of Science in Israele, hanno introdotto una ipotesi provocativa in base alla quale l’esistenza di forme di vita intelligenti, cioè capaci di studiare i processi fisici, impone dei limiti sulle possibili leggi fisiche. “La nostra vita qui sulla Terra, e tutto ciò che conosciamo dell’Universo intorno a noi, dipende da un preciso insieme di condizioni che ci permettono di esistere“, dice Jenkins. “Per esempio, se le forze fondamentali della natura fossero state leggermente diverse, con ogni probabilità gli atomi non si sarebbero formati”, continua Jenkins. “Dunque come mai deve essere così?

Il modello dell’espansione inflazionaria, sviluppato negli anni ’80 allo scopo di risolvere alcuni problemi della cosmologia osservativa, ci dice che il nostro Universo è uno dei tanti che è emerso dal vuoto primordiale. Anche se non abbiamo modo di vedere gli altri universi è plausibile ritenere che questi abbiano proprie leggi fisiche. Dunque non sarebbe un mistero il fatto che noi viviamo in un universo, diciamo, “raro” dove le condizioni fisiche sono quelle ideali per permettere l’esistenza della vita. E’ un po’ come cercare la vita su altri mondi alieni e chiedersi come mai sul nostro pianeta esistano le condizioni giuste per lo sviluppo di forme organiche. In questo senso, Jenkins e Perez hanno provato a modificare le leggi fondamentali della fisica assumendo di “togliere”, per così dire, l’elettromagnetismo o la gravità e vedere cosa succede. In alcuni casi i risultati permettono, sia pure ipoteticamente e con condizioni decisamente differenti da quelle presenti nel nostro Universo, la possibilità che la vita possa esistere in altri universi anche se essi sono caratterizzati da complicate e differenti strutture fisiche. Il fatto poi di capire che tipo di vita ci dobbiamo aspettare è un’altra storia. Questo ci porta a chiedersi se effettivamente il principio antropico sia o meno utile quando pensiamo a ciò che il multiverso potrebbe in definitiva contenere.

Naturalmente si tratta di idee speculative, sebbene alquanto intriganti, che i cosmologi cercano di portare avanti per avere una visione più grande così come l’idea, in particolare, dell’esistenza di universi parallelirisulta a molti scienziati alquanto affascinante. Ritornando alla costante cosmologica, possiamo concludere dicendo che gli universi in cui l’energia del vuoto è molto più grande sono comuni ma si espandono troppo rapidamente per formare stelle, pianeti e la stessa vita, mentre invece gli universi il cui valore dell’energia del vuoto è troppo piccolo sarebbero rari, dunque il nostro Universo sarebbe quello ottimale dove la costante cosmologica assume un valore compatibile con quello attuale. Ma allora siamo soli? Forse i risultati di Jenkins e Perez potrebbero indicare il fatto che il nostro Universo non sia abbastanza “regolato”, per così dire, per permettere lo sviluppo della vita come si è creduto in precedenza.

L’energia scura e la costante cosmologica

L’orientazione delle coppie galattiche, che dovrebbe essere casuale, potrebbe aiutare gli astronomi a rivelare distorsioni nello spaziotempo causate dall’espansione dell’Universo.
Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Uno dei problemi affrontati da Einstein fu quello di capire se l’Universo fosse statico o in espansione. Infatti, introducendo la massa come protagonista principale della sua teoria generale della relatività, ci si aspettava che tutta la materia sarebbe collassata in un unico “punto” per l’effetto della mutua attrazione gravitazionale. Ma come mai questo non accadeva e cos’era che lo impediva?

Nel 1917, l’idea di Einstein fu quella di introdurre nelle equazioni della relatività generale un termine costante, chiamato successivamente la costante cosmologica, che aveva gli effetti di una forza repulsiva, per contrastare la gravità e rendere, per così dire, statico l’Universo. Sebbene Einstein cercò di scoprire il significato più profondo di questo termine egli affermò che la sua presenza nelle equazioni della relatività fu il “suo più grande errore” nel momento in cui venne a conoscenza dei risultati di Edwin Hubble sull’espansione dell’Universo. Di fatto, la teoria della relatività generale considerava un Universo non statico ma in espansione anche se lo stesso Einstein non riteneva ci fosse mai stato un momento della creazione. Insomma, nonostante le sue radicali convinzioni, la teoria di Einstein descriveva un Universo dinamico che un tempo doveva essere molto più piccolo, ancora molto più piccolo delle dimensioni di un atomo, un’idea che si adattava bene a quello che più tardi sarà chiamato il modello del Big Bang (vedasi Idee sull’Universo).

Oggi, due ricercatori francesci, Christian Marinoni e Adeline Buzzi, riportano le analisi relative alle osservazioni di alcune coppie di galassie distanti. I ricercatori hanno utilizzato un approccio diverso al cosiddetto test Alcock-Paczynski e si sono concentrati sull’allineamento individuale di centinaia di coppie di galassie, analizzando un campione di 721 coppie di galassie vicine della SDSS confrontando le loro velocità di recessione con quelle di un campione di 509 coppie di galassie più distanti della DEEP2 redshift survey. “L’orientazione di queste binarie galattiche dovrebbe apparire casuale nello spazio. Tuttavia la geometria dello spazio e l’espansione dell’Universo possono deformare le orientazioni apparenti” spiega Marinoni. Senza introdurre le dovute correzioni, queste orientazioni spaziali possono presentarsi distorte a causa del redshift che dipende da come si sta espandendo l’Universo. Correggendo per l’effetto geometrico e tenendo conto dell’energia scura, i ricercatori sono arrivati ad ottenere un modello nel quale le coppie galattiche vengono osservate in tutte le direzioni. Ciò ha permesso di confermare due “dogmi” del modello cosmologico standard: 1) che lo spazio è geometricamente piatto e 2) che è dominato dalla misteriosa energia scura, che si comporterebbe come la famosa costante cosmologica di Einstein.

Nonostante ciò, il cosmologo Michael Turner dell’Università di Chicago è un pò cauto nell’accettare questi risultati e suggerisce ulteriori ricerche prima che possa essere confermata, o meno, questa ipotesi.

[Abstract: A geometric measure of dark energy with pairs of galaxies]