Archivi tag: brana-universi

LHC, mini buchi neri e dimensioni spaziali extra

Una delle conseguenze del modello detto ‘mondo-brana’, contemplato dalla teoria delle stringhe, è la formazione di  buchi neri microscopici che possono emergere in seguito alle collisioni di alta energia realizzate negli acceleratori di particelle. Le teorie che prevedono questa possibilità affascinante sono quelle in cui la scala di energia in cui avvengono i fenomeni fisici della gravità quantistica è molto inferiore rispetto al valore convenzionale di 1019 GeV (GeV indica 1 miliardo di electronVolt) e può addirittura essere ancora più bassa, cioè dell’ordine di qualche TeV (TeV indica 1000 miliardi di electronVolt).

La teoria della relatività generale può essere formulata in qualsiasi numero di dimensioni spaziotemporali anche se, ad oggi, i dati indicano che viviamo in un Universo caratterizzato da 3 dimensioni spaziali e 1 temporale. Sin dagli anni ’20, sono state formulate altre teorie della gravità, a partire da quella di Kaluza-Klein, che prevedono ulteriori dimensioni spaziali. Oggi, secondo la teoria delle stringhe, si ritiene che queste dimensioni extra ‘invisibili’ siano ‘arrotolate’ o ‘compattificate’ su scale molto piccole, dell’ordine della lunghezza di Planck che è di 10-33 cm, e perciò non possono essere osservate direttamente. Nonostante ciò, sono state elaborate delle teorie che si basano sull’esistenza di dimensioni spaziali molto più grandi se confrontate con la lunghezza di Planck, al fine di risolvere il cosiddetto ‘problema della gerarchia’.

Il punto chiave è capire come mai la scala naturale dell’energia relativa alla gravità quantistica, cioè l’energia di Planck che è di 1019 GeV, sia così grande, circa 17 ordini di grandezza, rispetto alla scala naturale dell’energia relativa alle interazioni fondamentali (ad esempio, la scala di energia della forza elettrodebole è 100 GeV).

Nel modello proposto da N. Arkani-Hamed, S. Dimopoulos e G.R. Dvali, detto scenario ADD, si hanno “n” dimensioni extra compattificate. Ora, un volume decisamente più grande che contiene queste dimensioni maggiorate fa sì che la scala fondamentale di energia della gravità quantistica diventi di molto inferiore rispetto a quella di Planck, diciamo dell’ordine di qualche TeV, e perciò può rientrare nell’ordine di grandezza delle energie prodotte dal Large Hadron Collider (LHC). Anche se la lunghezza scala di queste dimensioni non è stata esplorata dal punto di vista dell’interazione gravitazionale, essa è stata invece studiata nell’ambito degli esperimenti che riguardano la fisica delle particelle. Tuttavia, per evitare che esistano delle contraddizioni con il modello standard delle particelle, lo spaziotempo descritto dallo scenario ADD è composto da una brana quadridimensionale racchiusa da uno spaziotempo le cui dimensioni spaziali sono molto più grandi rispetto alla lunghezza scala di Planck. Tutte le particelle e le forze fondamentali sono confinate nella brana e solo la gravità si può propagare in questa struttura più grande che contiene la stessa brana. Questi modelli, come lo scenario ADD, sono noti anche con il termine ‘brana-universi’.

Una delle conseguenze più spettacolari del modello ADD è la possibilità di esplorare gli effetti della gravità quantistica su scale di energia che possono rientrare negli esperimenti di LHC, ossia la produzione di mini buchi neri durante le collisioni di alta energia. L’idea che sta alla base del processo è molto semplice. Consideriamo due particelle la cui energia prodotta dalla collisione è molto più grande di 1 TeV. In uno spaziotempo quadridimensionale, la cosiddetta “Hoop Conjecture” di Kip Thorne afferma che un mini buco nero si formerà solo se l’energia delle particelle viene compressa in una regione la cui circonferenza è inferiore a 2rH dove “rH” è il raggio di un buco nero di Schwarzschild la cui energia è uguale all’energia totale delle due particelle. In uno spaziotempo che ha più di 4 dimensioni, la “Hoop Conjecture” viene leggermente modificata, ma il principio fondamentale rimane lo stesso: in altre parole, se l’energia delle due particelle che collidono viene compressa in una regione estremamente piccola, allora ci si aspetta la formazione di un mini buco nero. Facendo una serie di calcoli che tengono conto della sezione d’urto delle particelle, si ha che assumendo, ad esempio, una energia di collisione uguale a 1Tev e che il numero delle dimensioni extra sia n=6, si ottiene un mini buco nero ogni secondo che ha una massa di 5TeV/c2. È importante sottolineare che la produzione di mini buchi neri è una possibilità realistica descritta da quei modelli che prevedono dimensioni extra maggiorate, dove cioè la scala fondamentale di energia della gravità quantistica è dell’ordine di 1 – 10 TeV. Le dimensioni di ogni buco nero che andrà a formarsi saranno microscopiche e con un raggio dell’ordine di 10-4 fm (fermi o femtometro; 1fm=10-15m).

Quando si forma in seguito alla collisione delle due particelle, il mini buco nero appare inizialmente molto asimmetrico e poi inizia a ruotare rapidamente, a causa del suo momento angolare. Assumendo che la quantità di energia iniziale del mini buco nero sia alcune volte maggiore della scala di energia della gravità quantistica, si può descrivere la sua geometria in termini della relatività generale, secondo una approssimazione semiclassica. Dunque, l’evoluzione del mini buco nero che si forma in seguito al processo di collisione tra due particelle può essere descritta nei seguenti punti:

  1. balding phase: il mini buco nero perde la sua asimmetria come parte del processo di formazione e inizia a ruotare rapidamente;
  2. spin-down phase: il mini buco nero emette radiazione Hawking, perde massa e momento angolare perciò smette di ruotare;
  3. Schwarzschild phase: il mini buco nero possiede ora una simmetria sferica e continua ad emettere radiazione Hawking;
  4. Planck phase: quando l’energia del mini buco nero diventa compatibile con quella tipica della gravità quantistica, dell’ordine cioè di alcuni TeV, la sua geometria non può essere più descritta dalla relatività generale e tutti gli effetti della gravità quantistica, che sono ignorati nell’approssimazione semiclassica, diventano importanti.

Nonostante i fisici del CERN utilizzino vari processi attraverso i quali viene simulata la formazione di mini buchi neri (CHARYBDIS2 e BlackMax per buchi neri semiclassici e QBH per buchi neri quantistici), ad oggi non esistono evidenze sperimentali in merito alla loro produzione.

L’esperimento ATLAS esclude la formazione di buchi neri semiclassici che hanno masse inferiori a 4TeV/c2 per n=6 ed energie di collisione di 2TeV, mentre CMS esclude la formazione di buchi neri quantistici con masse inferiori a 5-6TeV/c2 ed energie di collisione di 2-5TeV. Insomma, la mancanza di evidenze sperimentali sulla formazione di mini buchi neri permette di porre dei limiti inferiori alla scala di energia della gravità quantistica e, indirettamente, alla elusiva teoria della gravità quantistica.

arXiv: Black holes, TeV-scale gravity and the LHC
arXiv: Phenomenology, Astrophysics and Cosmology of Theories with Sub-Millimeter Dimensions and TeV Scale Quantum Gravity


Articoli correlati

Il nostro Universo potrebbe far parte di un multiverso più grande

E’ stato detto più volte che il nostro Universo potrebbe essere non l’unico ad esistere là fuori ma essere uno dei tanti infiniti universi che compongono quello che viene chiamato il “multiverso”. Nonostante questo concetto possa determinare una certa incredulità, esistono delle motivazioni fisiche che giustificano, per così dire, questa affermazione. Inoltre, dobbiamo dire che non esiste un solo modo per arrivare a questa conclusione perchè altre teorie puntano tutte, e in maniera indipendente, al concetto di multiverso. Molti teorici credono, di fatto, che l’esistenza di altri “universi nascosti” o non visibili è molto più probabile di quanto venga ipotizzato diversamente. Ecco qui di seguito le cinque teorie scientifiche più plausibili che suggeriscono l’esistenza del multiverso.


 Infiniti universi

Illustrazione artistica dello spaziotempo che si estende all’infinito.
Credit: Shutterstock/R.T.Wohlstadter

Gli scienziati non sono sicuri di quale sia la forma dello spaziotempo, anche se con ogni probabilità esso ha una geometria piatta o euclidea, e si estende all’infinito. Ma se il tessuto spaziotemporale si estende indefinitivamente, ci aspettiamo che in qualche punto deve cominciare a replicarsi perché esiste un numero finito di modi con cui le particelle si possono sistemare nello spazio e nel tempo. Dunque, se si guarda abbastanza lontano, in linea teorica dovremmo incontrare un’altra replica di noi stessi o, meglio, infinite repliche di noi stessi. Alcune di queste repliche gemelle faranno esattamente ciò che noi stiamo facendo adesso mentre le altre si comporteranno in maniera completamente diversa. Ora, dato che l’Universo osservabile si estende da quando la radiazione ha cominciato ad apparire e a diffondersi nello spazio circa 13,7 miliardi di anni fa, lo spaziotempo oltre questa distanza può essere considerato come un universo vicino che si è già separato. In questo modo, esisterebbe una moltitudine di universi vicini come una sorta di gigantesco insieme di tasselli (universi) che compongono il puzzle (multiverso).


Universi a bolle  

Illustrazione artistica del concetto di universi-bolla.
Credit: Shutterstock/Victor Habbick

Oltre all’ipotesi degli universi multipli che sono creati dal tessuto dello spaziotempo che si estende in maniera infinita, altri universi potrebbero emergere da quella che viene chiamata la “inflazione eterna”. Il modello dell’inflazione afferma che l’Universo subì una rapida espansione esponenziale subito dopo il Big Bang, aumentando il suo volume di spazio come un palloncino delle feste quando viene gonfiato. L’inflazione eterna, introdotta da Alexander Vilenkin, suggerisce un processo in base al quale in alcune porzioni dello spazio l’inflazione si arresta mentre in altre prosegue e questa situazione dà luogo alla formazione di tanti “universi a bolle” isolati. In questo modo, il nostro Universo, dove l’inflazione si è arrestata permettendo la formazione di stelle e galassie, è come una sorta di piccola bolla cosmica in un immenso oceano di spazio che contiene altri universi-bolla che stanno ancora subendo il processo d’inflazione. In alcuni di questi universi-bolla, le leggi e le costanti della fisica potrebbero essere differenti dalle nostre rendendo così gli altri universi decisamente strani o magari con forme di vita aliena bizzarre.


 Universi paralleli

Illustrazione artistica del concetto di universi-membrana che fluttuano in uno spazio multidimensionale.
Credit: Shutterstock/Sandy MacKenzie

Un’altra idea che emerge dalla teoria delle stringhe si basa sul concetto dei “brana-universi”, cioè universi paralleli che giacciono sulle superfici a 11 dimensioni note come “membrane” o più semplicemente “brane”. Questa teoria è stata introdotta da Paul Steinhardt e Neil Turok come alternativa al modello cosmologico standard al fine di superare il problema della singolarità iniziale del Big Bang. Dunque, secondo la teoria delle stringhe esistono altre dimensioni spaziali nascoste, rispetto alle tre dimensioni spaziali e a quella temporale a cui siamo abituati, che danno luogo a “brane” tridimensionali che fluttuano in uno spazio multidimensionale e dove in ciascuna di esse esiste un determinato universo. Possiamo immaginare che ogni universo-brana sia come una fetta di pane che fluttua in uno spazio multidimensionale assieme a tante altre fette di pane. Queste brane non sono sempre parallele tra loro e perciò, di tanto in tanto, esse collidono causando big bang multipli ognuno dei quali causa la nascita di un nuovo universo.


 Universi figli

Credit: NASA/JPL

La meccanica quantistica, che descrive il mondo degli atomi e delle particelle elementari, suggerisce un altro modo per la formazione degli universi multipli. La teoria descrive il mondo che ci circonda in termini di probabilità e non di certezze perciò le sue equazioni matematiche implicano che tutte le possibili combinazioni di una determinata situazione potranno verificarsi nei rispettivi singoli universi. Ad esempio, se arriviamo ad un incrocio dove possiamo andare a sinistra o a destra, l’Universo in cui viviamo potrebbe dar luogo, secondo la meccanica quantistica, a due “universi-figli”: uno in cui si procede a sinistra e un altro in cui si procede a destra. Inoltre, in ogni universo esiste una nostra copia testimone di ciò che accade dell’una o dell’altra situazione, la quale crede, anche se non correttamente, che la propria realtà sia l’unica che esista.


 Universi matematici

Credit: WGBH Educational Foundation

Gli scienziati hanno a lungo dibattuto sul fatto che la matematica sia semplicemente uno strumento utile per descrivere le leggi fisiche dell’Universo o se essa rappresenti effettivamente la realtà fondamentale per cui le nostre osservazioni dell’Universo siano in definitiva percezioni imperfette della sua vera natura matematica. Se è vero il secondo caso, forse la particolare struttura matematica che sta alla base del nostro Universo non è solamente l’unica opzione e perciò tutte le possibili strutture matematiche possono esistere nei rispettivi singoli universi.


Per maggiori approfondimenti: Enigmi Astrofisici. Dal Big Bang al Multiverso