Exploring the properties of the Universe by Doppler lensing

Sappiamo che l’Universo contiene centinaia di miliardi di galassie, basti guardare le spettacolari immagini che ci ha fornito il telescopio spaziale Hubble. Ce ne sono tante di diverse forme e dimensioni, ma quali sono in definitiva quelle più grandi? E poi, quali sono quelle più vicine alla nostra galassia che sembrano apparentemente più grandi delle altre? Naturalmente, non è possibile rispondere a queste domande analizzando semplicemente le immagini astronomiche poichè, di fatto, è necessario conoscere le distanze a cui si trovano le galassie in modo tale da ricavare una stima delle loro dimensioni reali.

Astronomers have their ways to measure a distance to a galaxy which allows them to solve this conundrum. One of the most popular methods, and in most cases, the only method that can be used to measure a distance to a remote galaxy, is to analyse its electromagnetic spectrum which includes the visible light that enables us to see it. Since the Universe is expanding, all distant galaxies are moving away from us. Because of this motion the spectrum of a galaxy is shifting towards its red part, the redshift as it is known to astronomers. The redshift phenomenon is a manifestation of the Doppler effect, the faster the motion, the larger the shift of the frequency. Therefore, the larger the redshift, the greater the distance to the observed galaxy. The exact relation between the redshift and distance follows from the cosmological model of the Universe. So if astronomers can measure a distance in some other way, then by comparing the observed distance and redshift with a prediction, they can measure the properties of our Universe such as for example the amount of dark matter and dark energy. There is, however, one problem here.

If a galaxy is moving on the top of the global expansion of the Universe, then this motion, via the Doppler effect, contributes to the observed redshift. And galaxies move all the time, just as molecules of the air, or bees within a swarm. The contribution from this local motion is not big if compared to a motion that follows from the expansion of the Universe. Still this additional redshift introduces noise to our measurements. This noise then distorts our estimation of the distance, and therefore our estimation of the real size of the observed galaxy. This is what is called the Doppler lensing, “Doppler” because of the Doppler effect involved, and “lensing” because this effect distorts the inferred size, just as the observed size of an object is distorted when observed through an optical lens. How then can we tell what is the real size of a galaxy? If all galaxies are moving and if their motion distorts our measurements then that sounds like a real mess. However, this “mess” or to be precise the amount of “messiness” can give us a very good insight into what our Universe is made of. Astronomers are now in a situation similar to radar operators who during World War II complained about “noise” in returned echoes due to rain, snow, and sleet. Back then it was a nuisance, now we actually look for this “noise” in order to predict weather. Similarly, if astronomers could measure apparent sizes of a very large number of galaxies, and correlations between them, then they could estimate an average amplitude of the “noise”. Using the technique based on the Doppler lensing effect, they can measure properties of our Universe and estimate how much dark matter and dark energy it contains.

With large galaxy surveys such as Dark Energy Survey (DES) and the contribution from the Australian OzDES we will be able to measure this effect. Further, much larger surveys will follow after completion of the Square Kilometre Array (SKA) telescope, currently being built partly in Western Australia and partly in South Africa, and utilise the Doppler lensing effect to get a better insight into properties and mysteries of our Universe. The calculations and the method itself were recently developed by a group of astronomers from Australia, South Africa, and United Kingdom. The method shows how by measuring correlations in the distortion of sizes of galaxies we can learn about the properties of our Universe (such as amount of dark matter and dark energy). This method and predictions that follow from this method will be presented today at the 8th Workshop of the Australian National Institute for Theoretical Astrophysics (ANITA) hosted by the Sydney Institute for Astronomy (SIfA) at the University of Sydney.

The Conversation: The measure of the universe through doppler lensing

arXiv: Cosmology with Doppler Lensing